cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115556 Numbers whose square is the concatenation of two numbers 9*m and m.

Original entry on oeis.org

12857142857142857142857142857142857143, 25714285714285714285714285714285714286, 117391304347826086956521739130434782608695652173913043478261
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Comments

a(4)=156521739130434782608695652173913043478260869565217391304348.
From Robert Israel, Aug 24 2023: (Start)
If 9 * 10^d + 1 = a^2 * b with a > 1, then a * b * c is a term if a^2/(90 + 10^(1-d)) < c^2 < a^2/(9 + 10^(-d)). For example, 9 * 10^d + 1 is divisible by 7^2 for d == 37 (mod 42), and then (9 * 10^d + 1)/7 and 2*(9 * 10^d + 1)/7 are terms. In particular, the sequence is infinite. (End)

Crossrefs

Programs

  • Maple
    F:= proc(d) local R,F,t,b,r,q,s,m0,x0,k;
         R:= NULL;
         F:= ifactors(9*10^d+1)[2];
         b:= mul(t[1]^floor(t[2]/2),t=F);
         for r in numtheory:-divisors(b) do
           x0:= (9*10^d+1)/r;
           m0:= x0/r;
           for k from ceil(sqrt(10^(d-1)/m0)) to floor(sqrt(10^d/m0)) do
             R:= R, x0*k;
           od
         od;
           R
    end proc:
    sort(map(F, [$1..90])); # Robert Israel, Aug 24 2023

Extensions

Definition modified by Georg Fischer, Jul 26 2019