A115560 Twin prime pairs k-1 and k+1 such that the squares of both are present in A115557.
11, 13, 29, 31, 197, 199, 239, 241, 419, 421, 659, 661, 881, 883, 1019, 1021, 1061, 1063, 1481, 1483, 1877, 1879, 3167, 3169, 3821, 3823, 4019, 4021, 4049, 4051, 4787, 4789, 6359, 6361, 7589, 7591, 9437, 9439, 13691, 13693, 14447, 14449, 14627, 14629, 16451, 16453
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
ta={{0}};tb={{0}}; Do[s=DivisorSigma[1,DivisorSigma[0,n]]; s1=DivisorSigma[0,DivisorSigma[1,n]]; If[Equal[s-s1,0]&&IntegerQ[Sqrt[n]&&PrimeQ[Sqrt[n]]],Print[n]; ta=Append[ta,n];tb=Append[tb,Sqrt[n]]],{n,1,100000000}] ta=Delete[ta,1];tb=Delete[tb,1];ni=Intersection[tb,2+tb]; Union[ni,ni-2]
-
PARI
isok(n) = issquare(n) && (sigma(numdiv(n)) == numdiv(sigma(n))); \\ A115557 lista(nn) = {forprime(p=2, nn, if (isprime(p+2) && isok(p^2) && isok((p+2)^2), print1(p, ", ", p+2, ", ")););} \\ Michel Marcus, Jul 17 2019
Formula
The commutator [sigma, tau] is zero and a(n) is the square root of special prime solutions. These solutions are twin primes. Both twins are displayed.
Extensions
More terms from Amiram Eldar, Jul 17 2019