A115591 Primes p such that the multiplicative order of 2 modulo p is (p-1)/2.
7, 17, 23, 41, 47, 71, 79, 97, 103, 137, 167, 191, 193, 199, 239, 263, 271, 311, 313, 359, 367, 383, 401, 409, 449, 463, 479, 487, 503, 521, 569, 599, 607, 647, 719, 743, 751, 761, 769, 809, 823, 839, 857, 863, 887, 929, 967, 977, 983, 991, 1009, 1031
Offset: 1
Keywords
Links
- Klaus Brockhaus, Table of n, a(n) for n=1..1000
Crossrefs
Programs
-
Magma
[ p: p in PrimesUpTo(1031) | r eq 1 and Order(R!2) eq q where q,r is Quotrem(p,2) where R is ResidueClassRing(p) ]; // Klaus Brockhaus, Dec 02 2008
-
Mathematica
fQ[n_] := 1 + 2 MultiplicativeOrder[2, n] == n; Select[ Prime@ Range@ 174, fQ]
-
PARI
r=2;forprime(p=3,1500,z=(p-1)/znorder(Mod(r,p));if(z==2,print1(p,", "))); \\ Joerg Arndt, Jan 12 2011
Comments