A115596 The least number k > 1 such that (p+1)^k - p^k is prime, p = n-th prime.
2, 2, 2, 7, 2, 3, 3, 5, 2, 2, 5, 3, 2, 37, 58543, 2, 4663, 17, 3, 61, 23, 7, 2, 2, 7, 5, 7, 59, 5, 2, 59, 2, 196873
Offset: 1
Examples
a(1)=2 because (2+1)^2-2^2 = 5 is prime; a(14)=37 because p(14)=43 and (43+1)^37-43^37 = 3679488080703419029992001830200360494989758810080014618823621 is prime.
Programs
-
Mathematica
s={}; Do[n=Prime[i];k=2; While[!PrimeQ[(n+1)^k-n^k],k++]; AppendTo[s, k], {i, 14}]; s (* Amiram Eldar, Oct 12 2018 *)
-
PARI
a(n)=my(p=prime(n),k=1); while(!ispseudoprime((p+1)^k++-p^k),); k \\ Charles R Greathouse IV, Oct 08 2013
Extensions
Edited by Giuseppe Coppoletta, Oct 10 2018
a(15)-a(33) from Vaclav Kotesovec, Oct 11 2018
Comments