A115621 Signature of partitions in Abramowitz and Stegun order.
1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 4, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 5, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 3, 2, 2, 1, 4, 6, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 5, 7, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 1, 1, 2
Offset: 1
Examples
[1]; [1], [2]; [1], [1,1], [3]; [1], [1,1], [2], [1,2], [4]; ... From _Hartmut F. W. Hoft_, Apr 25 2015: (Start) Extending the triangle to rows 5 and 6 where row headings indicate the number of elements in the underlying partitions. Brackets group the multiplicities of a single partition. row 5 row 6 1: [1] [1] 2: [1,1] [1,1] [1,1] [1,1] [2] 3: [1,2] [1,2] [1,2] [1,1,1] [3] 4: [1,3] [1,3] [2,2] 5: [5] [1,4] 6: [6] (End)
Links
- Robert Price, Table of n, a(n) for n = 1..8266 (first 20 rows).
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Programs
-
Mathematica
(* row[] and triangle[] compute structured rows of the triangle as laid out above *) mL[pL_] := Map[Last[Transpose[Tally[#]]]&, pL] row[n_] := Map[Map[Sort, mL[#]]&, GatherBy[Map[Sort, IntegerPartitions[n]], Length]] triangle[n_] := Map[row, Range[n]] a115621[n_]:= Flatten[triangle[n]] Take[a115621[8],105] (* data *) (* Hartmut F. W. Hoft, Apr 25 2015 *) Map[Sort[#, Less] &, Table[Last /@ Transpose /@ Tally /@ Sort[Reverse /@ IntegerPartitions[n]], {n, 8}], 2]
-
SageMath
from collections import Counter def A115621_row(n): h = lambda p: sorted(Counter(p).values()) return flatten([h(p) for k in (0..n) for p in Partitions(n, length=k)]) for n in (1..10): print(A115621_row(n)) # Peter Luschny, Nov 02 2019
Comments