A115622 Irregular triangle read by rows: row m lists the signatures of all partitions of m when the partitions are arranged in Mathematica order.
1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 4, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 5, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 3, 2, 2, 4, 1, 6, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 2, 1, 2, 1, 1, 4, 1, 3, 1, 3, 2, 5, 1, 7, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 4, 1, 2, 1, 2, 2, 2
Offset: 1
Examples
From _Hartmut F. W. Hoft_, Apr 25 2015: (Start) The first six rows of the triangle are as follows. 1: [1] 2: [1] [2] 3: [1] [1,1] [3] 4: [1] [1,1] [2] [2,1] [4] 5: [1] [1,1] [1,1] [2,1] [2,1] [3,1] [5] 6: [1] [1,1] [1,1] [2,1] [2] [1,1,1] [3,1] [3] [2,2] [4,1] [6] See A115621 for the signatures in Abramowitz-Stegun order. (End)
Links
- Robert Price, Table of n, a(n) for n = 1..8266 (first 20 rows).
Programs
-
Mathematica
(* row[] and triangle[] compute structured rows of the triangle as laid out above *) mL[pL_] := Map[Last[Transpose[Tally[#]]]&, pL] row[n_] := Map[Reverse[Sort[#]]&, mL[IntegerPartitions[n]]] triangle[n_] := Map[row, Range[n]] a115622[n_]:= Flatten[triangle[n]] Take[a115622[8],105] (* data *) (* Hartmut F. W. Hoft, Apr 25 2015 *) Map[Sort[#, Greater] &, Table[Last /@ Transpose /@ Tally /@ IntegerPartitions[n], {n, 8}], 2] // Flatten (* Robert Price, Jun 12 2020 *)
Comments