cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A115644 Brilliant numbers (A078972) that are sums of distinct factorials.

Original entry on oeis.org

6, 9, 25, 121, 841, 871, 5041, 5767, 363721, 368761, 409111, 3633841, 3992431, 3992551, 4032121, 4037791, 39962281, 39962311, 39963031, 40279711, 40279801, 43585921, 43591687, 43909207, 479047801, 479365321, 479370271, 482631271
Offset: 1

Views

Author

Giovanni Resta, Jan 27 2006

Keywords

Examples

			39962281 = 11! + 8! + 7! + 5!+ 1! = 4861*8221.
		

Crossrefs

Programs

  • Mathematica
    brillQ[n_] := Block[{d = FactorInteger[n]}, Plus@@Last/@d==2 && (Last/@d=={2} || Length@IntegerDigits@((First/@d)[[1]])==Length@IntegerDigits@((First/@d)[[2]]))]; fac=Range[20]!;lst={}; Do[ n = Plus@@(fac*IntegerDigits[k, 2, 20]); If[brillQ[n], AppendTo[lst, n]], {k, 2^20-1}]; lst

A115646 Semiprimes (A001358) that are sums of distinct factorials.

Original entry on oeis.org

6, 9, 25, 26, 33, 121, 122, 123, 129, 145, 146, 721, 723, 745, 746, 753, 841, 842, 843, 849, 865, 866, 871, 5041, 5042, 5065, 5071, 5161, 5163, 5169, 5186, 5191, 5761, 5767, 5793, 5905, 5906, 5911, 40321, 40322, 40323, 40345, 40346, 40353, 40441
Offset: 1

Views

Author

Giovanni Resta, Jan 27 2006

Keywords

Comments

Factorials 0! and 1! are not considered distinct.

Examples

			721 = 6!+1! = 7*103.
		

Crossrefs

Programs

  • Mathematica
    semipQ[n_] := Plus @@ Last /@ FactorInteger[n] == 2; fac=Range[10]!;lst={}; Do[ n = Plus@@(fac*IntegerDigits[k, 2, 10]); If[semipQ[n], AppendTo[lst, n]], {k, 2^10-1}]; Union[lst]

A173518 Solutions z of the Diophantine equation x^3 + y^3 = 6z^3.

Original entry on oeis.org

21, 960540, 16418498901144294337512360, 436066841882071117095002459324085167366543342937477344818646196279385305441506861017701946929489111120
Offset: 1

Views

Author

Michel Lagneau, Feb 20 2010

Keywords

Comments

A. Nitaj proved Erdős's conjecture (1975) and claimed that there exist infinitely many triples of 3-powerful numbers a,b,c with (a,b) = 1, such that a+b=c, because the equation x^3 + y^3 = 6z^3 admits an infinite number of solutions, and given by the recurrence equations (see formula). It is proved that a=x(k)^3, b=y(k)^3, and c=6c^3, and are 3-powerful numbers for each k >= 1.

Examples

			37^3 + 17^3 = 6*21^3.
		

References

  • J. M. De Koninck, Ces nombres qui nous fascinent, Ellipses, 2008, p. 348.
  • Mordell, L. J. (1969). Diophantine equations. Academic Press. ISBN 0-12-506250-8

Crossrefs

Programs

  • Maple
    x0:=37:y0:=17:z0:=21: for p from 1 to 5 do: x1:=x0*(x0^3+ 2*y0^3):y1:=-y0*(2*x0^3+ y0^3):z1:=z0*(x0^3- y0^3): print(z1) : x0 :=x1 :y0 :=y1 :z0 :=z1 :od :

Formula

We generate the solutions (x(k),y(k),z(k)) from the initial solution x(0) = 37, y(0)=17, z(0)=21 x(k+1) = x(k)*(x(k)^3 + 2*y(k)^3) y(k+1) = -y(k)*(2*x(k)^3 + y(k)^3) z(k+1) = z(k)*(x(k)^3 - y(k)^3).
Showing 1-3 of 3 results.