A115647 Triangular numbers that are sums of distinct factorials.
1, 3, 6, 120, 153, 5886, 40470, 41041, 40279800
Offset: 1
Keywords
Examples
1 = T(1) = 1!. 3 = T(2) = 2!+1!. 6 = T(3) = 3!. 120 = T(15) = 5!. 153 = T(17) = 5!+4!+3!+2!+1!. 5886 = T(108) = 7!+6!+5!+3!. 40470 = T(284) = 8!+5!+4!+3!. 41041 = T(286) = 8!+6!+1!. 40279800 = T(8975) = 11!+9!+5!.
Links
- Shyam Sunder Gupta, Triangular Numbers, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 3, 83-125. See also Fascinating Factorials, Ch. 16, 411-442.
Crossrefs
Cf. A025494.
Programs
-
Mathematica
triQ[n_] := IntegerQ@Sqrt[8n+1]; fac=Reverse@Range[21]!; lst={}; Do[ n = Plus@@(fac*IntegerDigits[k, 2, 21]); If[triQ[n], AppendTo[lst, n]; Print[{n, k}]], {k, 2^21-1}]; Union@lst
Comments