cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A115661 Numbers n which have the same number of distinct prime divisors as the reverse of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 21, 22, 23, 26, 28, 31, 32, 33, 36, 37, 39, 44, 45, 51, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 71, 73, 75, 77, 79, 82, 85, 86, 88, 93, 96, 97, 99, 101, 107, 108, 111, 113, 115, 116, 117, 121, 122, 123, 125, 128
Offset: 1

Views

Author

Giovanni Resta, Jan 29 2006

Keywords

Examples

			omega(16)=omega(61)=1.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[130],PrimeNu[#]==PrimeNu[FromDigits[Reverse[ IntegerDigits[ #]]]]&] (* Harvey P. Dale, Jan 14 2012 *)

A354746 Non-repdigit numbers k such that every permutation of the digits of k has the same number of distinct prime divisors.

Original entry on oeis.org

12, 13, 15, 16, 17, 21, 23, 26, 28, 31, 32, 36, 37, 39, 45, 51, 54, 56, 57, 58, 61, 62, 63, 65, 68, 69, 71, 73, 75, 79, 82, 85, 86, 93, 96, 97, 113, 116, 117, 122, 131, 155, 156, 161, 165, 171, 177, 178, 187, 199, 212, 221, 224, 226, 228, 242, 245, 248, 254, 255, 258, 262, 282
Offset: 1

Views

Author

Metin Sariyar, Jun 05 2022

Keywords

Examples

			156 is a term because omega(156) = omega(165) = omega (516) = omega(561) = omega(615) = omega(651) = 3, where omega(n) is the number of distinct prime divisors of n.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10000],CountDistinct[PrimeNu[FromDigits /@ Permutations[IntegerDigits[#]]]]==1&&CountDistinct[IntegerDigits[#]]>1&]
  • Python
    from sympy import factorint
    from itertools import permutations
    def ok(n):
        s, pf = str(n), len(factorint(n))
        if len(set(s)) == 1: return False
        return all(pf==len(factorint(int("".join(p)))) for p in permutations(s))
    print([k for k in range(500) if ok(k)]) # Michael S. Branicky, Jun 05 2022
Showing 1-2 of 2 results.