cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A115688 Semiprimes (A001358) whose digit reversal is a powerful(1) number (A001694).

Original entry on oeis.org

4, 9, 10, 46, 94, 121, 169, 215, 526, 869, 961, 982, 1042, 1273, 1405, 1843, 2918, 3194, 4069, 4633, 5213, 5221, 5758, 6313, 6511, 6937, 8045, 8402, 8651, 8882, 9235, 9481, 9586, 9886, 10201, 10609, 12538, 12769, 14023, 16171, 16327, 16582
Offset: 1

Views

Author

Giovanni Resta, Jan 31 2006

Keywords

Examples

			869=11*79 is semiprime and 968=2^3*11^2 is powerful.
		

Crossrefs

Programs

  • Maple
    N:= 99999:
    S:= {1}:
    p:= 1:
    do
      p:= nextprime(p);
      if p^2 > N then break fi;
      S:= S union map(t -> seq(t*p^j,j=2..floor(log[p](N/t))), S);
    od:
    digrev:= proc(x) local L;
      L:= convert(x,base,10);
      add(L[-i]*10^(i-1),i=1..nops(L))
    end proc:
    sort(convert({10} union select(t -> numtheory:-bigomega(t)=2, map(digrev, select(t -> t mod 10 <> 0, S))),list)); # Robert Israel, Dec 03 2019

A173518 Solutions z of the Diophantine equation x^3 + y^3 = 6z^3.

Original entry on oeis.org

21, 960540, 16418498901144294337512360, 436066841882071117095002459324085167366543342937477344818646196279385305441506861017701946929489111120
Offset: 1

Views

Author

Michel Lagneau, Feb 20 2010

Keywords

Comments

A. Nitaj proved Erdős's conjecture (1975) and claimed that there exist infinitely many triples of 3-powerful numbers a,b,c with (a,b) = 1, such that a+b=c, because the equation x^3 + y^3 = 6z^3 admits an infinite number of solutions, and given by the recurrence equations (see formula). It is proved that a=x(k)^3, b=y(k)^3, and c=6c^3, and are 3-powerful numbers for each k >= 1.

Examples

			37^3 + 17^3 = 6*21^3.
		

References

  • J. M. De Koninck, Ces nombres qui nous fascinent, Ellipses, 2008, p. 348.
  • Mordell, L. J. (1969). Diophantine equations. Academic Press. ISBN 0-12-506250-8

Crossrefs

Programs

  • Maple
    x0:=37:y0:=17:z0:=21: for p from 1 to 5 do: x1:=x0*(x0^3+ 2*y0^3):y1:=-y0*(2*x0^3+ y0^3):z1:=z0*(x0^3- y0^3): print(z1) : x0 :=x1 :y0 :=y1 :z0 :=z1 :od :

Formula

We generate the solutions (x(k),y(k),z(k)) from the initial solution x(0) = 37, y(0)=17, z(0)=21 x(k+1) = x(k)*(x(k)^3 + 2*y(k)^3) y(k+1) = -y(k)*(2*x(k)^3 + y(k)^3) z(k+1) = z(k)*(x(k)^3 - y(k)^3).
Showing 1-2 of 2 results.