cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A115692 Triangular numbers whose digit reversal is a powerful(1) number (A001694).

Original entry on oeis.org

1, 10, 630, 16290, 52650, 165600, 986310, 3428271, 9446031, 9485190, 10693000, 23698170, 52168005, 1270004401, 2597150556, 3484079550, 14214075921, 140884670790, 217958758920, 238847271435, 403146774891
Offset: 1

Views

Author

Giovanni Resta, Jan 31 2006

Keywords

Examples

			3428271=T(2618) and 1728243=3^3*11^2*2^2 is powerful.
		

Crossrefs

A173518 Solutions z of the Diophantine equation x^3 + y^3 = 6z^3.

Original entry on oeis.org

21, 960540, 16418498901144294337512360, 436066841882071117095002459324085167366543342937477344818646196279385305441506861017701946929489111120
Offset: 1

Views

Author

Michel Lagneau, Feb 20 2010

Keywords

Comments

A. Nitaj proved Erdős's conjecture (1975) and claimed that there exist infinitely many triples of 3-powerful numbers a,b,c with (a,b) = 1, such that a+b=c, because the equation x^3 + y^3 = 6z^3 admits an infinite number of solutions, and given by the recurrence equations (see formula). It is proved that a=x(k)^3, b=y(k)^3, and c=6c^3, and are 3-powerful numbers for each k >= 1.

Examples

			37^3 + 17^3 = 6*21^3.
		

References

  • J. M. De Koninck, Ces nombres qui nous fascinent, Ellipses, 2008, p. 348.
  • Mordell, L. J. (1969). Diophantine equations. Academic Press. ISBN 0-12-506250-8

Crossrefs

Programs

  • Maple
    x0:=37:y0:=17:z0:=21: for p from 1 to 5 do: x1:=x0*(x0^3+ 2*y0^3):y1:=-y0*(2*x0^3+ y0^3):z1:=z0*(x0^3- y0^3): print(z1) : x0 :=x1 :y0 :=y1 :z0 :=z1 :od :

Formula

We generate the solutions (x(k),y(k),z(k)) from the initial solution x(0) = 37, y(0)=17, z(0)=21 x(k+1) = x(k)*(x(k)^3 + 2*y(k)^3) y(k+1) = -y(k)*(2*x(k)^3 + y(k)^3) z(k+1) = z(k)*(x(k)^3 - y(k)^3).
Showing 1-2 of 2 results.