A115692
Triangular numbers whose digit reversal is a powerful(1) number (A001694).
Original entry on oeis.org
1, 10, 630, 16290, 52650, 165600, 986310, 3428271, 9446031, 9485190, 10693000, 23698170, 52168005, 1270004401, 2597150556, 3484079550, 14214075921, 140884670790, 217958758920, 238847271435, 403146774891
Offset: 1
3428271=T(2618) and 1728243=3^3*11^2*2^2 is powerful.
A173518
Solutions z of the Diophantine equation x^3 + y^3 = 6z^3.
Original entry on oeis.org
21, 960540, 16418498901144294337512360, 436066841882071117095002459324085167366543342937477344818646196279385305441506861017701946929489111120
Offset: 1
- J. M. De Koninck, Ces nombres qui nous fascinent, Ellipses, 2008, p. 348.
- Mordell, L. J. (1969). Diophantine equations. Academic Press. ISBN 0-12-506250-8
- P. Erdős, C. Pomerance, and A. Sárközy, On locally repeated values of certain arithmetic functions, II, Acta Math. Hungarica 49 (1987), pp. 251-259. [alternate link]
- A. Nitaj, On a conjecture of Erdős on 3-powerful numbers, Bull. London Math. Soc. 27 (1995), no. 4, 317-318.
- Wikipedia, Diophantine equation
Cf.
A050240,
A050241,
A057521,
A060859,
A113839,
A115645,
A115651,
A115676,
A115686,
A115687,
A115689,
A115691,
A115693,
A115695,
A115697,
A116064,
A140172.
Showing 1-2 of 2 results.
Comments