A115714 Periodic {1,-1,-3,0,1,-5,1,0,-3,-1,1,-4}.
1, -1, -3, 0, 1, -5, 1, 0, -3, -1, 1, -4, 1, -1, -3, 0, 1, -5, 1, 0, -3, -1, 1, -4, 1, -1, -3, 0, 1, -5, 1, 0, -3, -1, 1, -4, 1, -1, -3, 0, 1, -5, 1, 0, -3, -1, 1, -4, 1, -1, -3, 0, 1, -5, 1, 0, -3, -1, 1, -4, 1, -1, -3, 0, 1, -5, 1, 0, -3, -1, 1, -4
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (-1,-1,0,1,1,1)
Crossrefs
Cf. A115713.
Programs
-
Mathematica
LinearRecurrence[{-1,-1,0,1,1,1}, {1,-1,-3,0,1,-5}, 80] (* G. C. Greubel, Nov 23 2021 *)
-
Sage
def A115714_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1-3*x^2+4*x^3+3*x^4+4*x^5)/(1+x+x^2-x^4-x^5-x^6) ).list() A115714_list(80) # G. C. Greubel, Nov 23 2021
Formula
G.f.: (1 - 3*x^2 + 4*x^3 + 3*x^4 + 4*x^5)/(1 + x + x^2 - x^4 - x^5 - x^6).
a(n) = Sum_{k=0..floor(n/2)} A115713(n-k, k).
Comments