A115721 Table of Durfee square of partitions in Abramowitz and Stegun order.
0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 2
Offset: 0
Examples
First few rows: 0; 1,1; 1,1,1; 1,1,2,1,1; 1,1,2,1,2,1,1
Links
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Eric Weisstein's World of Mathematics, Durfee Square.
Formula
If partition is laid out in descending order p(1),p(2),...,p(k) without repetition factors (e.g. [3,2,2,1,1,1]), a(P) = max_k min(k,p(k)).