cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A115724 Number of partitions with maximum rectangle n.

Original entry on oeis.org

1, 1, 3, 5, 16, 16, 76, 53, 218, 303, 750, 412, 3680, 1361, 5015, 9206, 23162, 8290, 66166, 19936, 161656, 192181, 236007, 100730, 1338186, 819694, 1180478, 1924986, 5215844, 1246468, 17370367, 3098322, 24926724, 23473968, 24790503, 41886304, 227243488
Offset: 0

Views

Author

Keywords

Examples

			The 16 partitions with maximum rectangle 4 are [4], [2^2], [1^4], [4,1], [3,2], [2^2,1], [2,1^3], [4,2], [4,1^2], [3,2,1], [3,1^3], [2^2,1^2], [4,2,1], [4,1^3], [3,2,1^2] and [4,2,1^2].
		

Crossrefs

Formula

a(n) = A115725(n) - A115725(n-1).

A115723 Table of partitions of n with maximum rectangle k.

Original entry on oeis.org

1, 0, 2, 0, 1, 2, 0, 0, 2, 3, 0, 0, 1, 4, 2, 0, 0, 0, 5, 2, 4, 0, 0, 0, 3, 4, 6, 2, 0, 0, 0, 1, 4, 11, 2, 4, 0, 0, 0, 0, 3, 14, 4, 6, 3, 0, 0, 0, 0, 1, 15, 6, 12, 4, 4, 0, 0, 0, 0, 0, 13, 8, 18, 9, 6, 2, 0, 0, 0, 0, 0, 8, 10, 25, 14, 12, 2, 6, 0, 0, 0, 0, 0, 4, 9, 30, 22, 20, 4, 10, 2
Offset: 1

Views

Author

Keywords

Comments

T(n,k)=0 if n > A006218(k).

Examples

			The table starts:
  1;
  0, 2;
  0, 1, 2;
  0, 0, 2, 3;
  0, 0, 1, 4, 2;
  0, 0, 0, 5, 2,  4;
  0, 0, 0, 3, 4,  6, 2;
  0, 0, 0, 1, 4, 11, 2,  4;
  0, 0, 0, 0, 3, 14, 4,  6, 3;
  0, 0, 0, 0, 1, 15, 6, 12, 4, 4;
  ...
		

Crossrefs

Cf. A000005 (diagonal), A000041 (row sums), A061017 (column indices of leftmost nonzero elements), A115724 (column sums), A115727, A115728, A006218, A182099.

Formula

Sum_{k=1..n} k * T(n,k) = A182099(n).

A115628 Factorization of n! into primorials.

Original entry on oeis.org

1, 0, 1, 2, 1, 2, 0, 1, 2, 1, 1, 2, 1, 0, 1, 5, 1, 0, 1, 3, 3, 0, 1, 4, 2, 1, 1, 4, 2, 1, 0, 1, 5, 3, 1, 0, 1, 5, 3, 1, 0, 0, 1, 6, 3, 0, 1, 0, 1, 5, 3, 1, 1, 0, 1, 9, 3, 1, 1, 0, 1, 9, 3, 1, 1, 0, 0, 1, 8, 5, 1, 1, 0, 0, 1, 8, 5, 1, 1, 0, 0, 0, 1, 10, 4, 2, 1, 0, 0, 0, 1, 9, 5, 1, 2, 0, 0, 0, 1, 10, 5, 1, 1, 1
Offset: 2

Views

Author

Keywords

Comments

Factorial of n has a unique representation as a product of primorials: n! = 2#^T(n,1)*3#^T(n,2)*...*P_{Pi(n)}#^T(n,Pi(n)).

Examples

			Rows start: 1; 0,1; 2,1; 2,0,1; 2,1,1; 2,1,0,1; 5,1,0,1; 3,3,0,1.
		

Crossrefs

Cf. A115627, A000142, A002110. Row lengths are A000720.

Formula

T(n, k) = A115727(n, k)-A115727(n, k+1).
Showing 1-3 of 3 results.