cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A182114 Number of partitions of n with largest inscribed rectangle having area <= k; triangle T(n,k), 0<=n, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 1, 3, 0, 0, 0, 2, 5, 0, 0, 0, 1, 5, 7, 0, 0, 0, 0, 5, 7, 11, 0, 0, 0, 0, 3, 7, 13, 15, 0, 0, 0, 0, 1, 5, 16, 18, 22, 0, 0, 0, 0, 0, 3, 17, 21, 27, 30, 0, 0, 0, 0, 0, 1, 16, 22, 34, 38, 42, 0, 0, 0, 0, 0, 0, 13, 21, 39, 48, 54, 56
Offset: 0

Views

Author

Alois P. Heinz, Apr 12 2012

Keywords

Comments

T(n,k) = A000041(k) for n
Sum_{n>=0} T(n,k) = A115725(k).

Examples

			T(5,4) = 5 because there are 5 partitions of 5 with largest inscribed rectangle having area <= 4: [1,1,1,2], [1,2,2], [1,1,3], [2,3], [1,4].
T(9,5) = 3: [1,1,1,2,4], [1,1,1,1,5], [1,1,2,5].
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 0, 2;
  0, 0, 1, 3;
  0, 0, 0, 2, 5;
  0, 0, 0, 1, 5, 7;
  0, 0, 0, 0, 5, 7, 11;
  0, 0, 0, 0, 3, 7, 13, 15;
  0, 0, 0, 0, 1, 5, 16, 18, 22;
  0, 0, 0, 0, 0, 3, 17, 21, 27, 30;
  0, 0, 0, 0, 0, 1, 16, 22, 34, 38, 42;
  ...
		

Crossrefs

Diagonal gives: A000041.
T(n,n-1) = A144300(n) = A000041(n) - A000005(n).
T(n+d,n) for d=2-10 give: A218623, A218624, A218625, A218626, A218627, A218628, A218629, A218630, A218631.

Programs

  • Maple
    b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
          `if`(i=1, `if`(t+n<=k, 1, 0), `if`(i<1, 0, b(n, i-1, t, k)+
           add(`if`(t+j<=k/i, b(n-i*j, i-1, t+j, k), 0), j=1..n/i))))
        end:
    T:= (n, k)-> b(n, n, 0, k):
    seq(seq(T(n, k), k=0..n), n=0..15);
  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i == 1, If[t + n <= k, 1, 0], If[i < 1, 0, b[n, i - 1, t, k] + Sum[If[t + j <= k/i, b[n - i*j, i - 1, t + j, k], 0], {j, 1, n/i}]]]] ; T[n_, k_] := b[n, n, 0, k]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 15}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)

Formula

T(n,k) = Sum_{i=1..k} A115723(n,i) for n>0, T(0,0) = 1.

A115724 Number of partitions with maximum rectangle n.

Original entry on oeis.org

1, 1, 3, 5, 16, 16, 76, 53, 218, 303, 750, 412, 3680, 1361, 5015, 9206, 23162, 8290, 66166, 19936, 161656, 192181, 236007, 100730, 1338186, 819694, 1180478, 1924986, 5215844, 1246468, 17370367, 3098322, 24926724, 23473968, 24790503, 41886304, 227243488
Offset: 0

Author

Keywords

Examples

			The 16 partitions with maximum rectangle 4 are [4], [2^2], [1^4], [4,1], [3,2], [2^2,1], [2,1^3], [4,2], [4,1^2], [3,2,1], [3,1^3], [2^2,1^2], [4,2,1], [4,1^3], [3,2,1^2] and [4,2,1^2].
		

Crossrefs

Formula

a(n) = A115725(n) - A115725(n-1).

A182099 Total area of the largest inscribed rectangles of all integer partitions of n.

Original entry on oeis.org

0, 1, 4, 8, 18, 29, 54, 82, 136, 202, 309, 441, 658, 915, 1303, 1790, 2479, 3337, 4541, 6022, 8045, 10554, 13876, 17996, 23409, 30055, 38634, 49208, 62650, 79116, 99898, 125213, 156848, 195339, 242964, 300707, 371770, 457493, 562292, 688451, 841707, 1025484
Offset: 0

Author

Alois P. Heinz, Apr 11 2012

Keywords

Comments

a(n) >= A000041(n)*A061017(n) for n>0 because the least largest inscribed rectangle of any integer partition of n is A061017(n) and A000041(n) is the number of partitions of n.
a(n) >= A116503(n), the sum of the areas of the Durfee squares of all partitions of n.

Examples

			a(4) = 18 = 4+3+4+3+4 because the partitions of 4 are [1,1,1,1], [1,1,2], [2,2], [1,3], [4] and the largest inscribed rectangles have areas 4*1, 3*1, 2*2, 1*3, 1*4.
a(5) = 29 = 5+4+4+3+4+4+5 because the partitions of 5 are [1,1,1,1,1], [1,1,1,2], [1,2,2], [1,1,3], [2,3], [1,4], [5].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
          `if`(i=1, `if`(t+n>k, 0, 1), `if`(i<1, 0, b(n, i-1, t, k)
          +add(`if`(t+j>k/i, 0, b(n-i*j, i-1, t+j, k)), j=1..n/i))))
        end:
    a:= n-> add(k*(b(n, n, 0, k) -b(n, n, 0, k-1)), k=1..n):
    seq(a(n), n=0..50);
  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i == 1, If[t + n > k, 0, 1], If[i < 1, 0, b[n, i - 1, t, k] + Sum[If[t + j > k/i, 0, b[n - i j, i - 1, t + j, k]], {j, 1, n/i}]]]];
    a[n_] := Sum[k(b[n, n, 0, k] - b[n, n, 0, k - 1]), {k, 1, n}];
    a /@ Range[0, 50] (* Jean-François Alcover, Dec 06 2020, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=1..n} k * A115723(n,k) for n>0, a(0) = 0.
a(n) = Sum_{k=1..n} k * (A182114(n,k) - A182114(n,k-1)).
Showing 1-3 of 3 results.