A182114 Number of partitions of n with largest inscribed rectangle having area <= k; triangle T(n,k), 0<=n, 0<=k<=n, read by rows.
1, 0, 1, 0, 0, 2, 0, 0, 1, 3, 0, 0, 0, 2, 5, 0, 0, 0, 1, 5, 7, 0, 0, 0, 0, 5, 7, 11, 0, 0, 0, 0, 3, 7, 13, 15, 0, 0, 0, 0, 1, 5, 16, 18, 22, 0, 0, 0, 0, 0, 3, 17, 21, 27, 30, 0, 0, 0, 0, 0, 1, 16, 22, 34, 38, 42, 0, 0, 0, 0, 0, 0, 13, 21, 39, 48, 54, 56
Offset: 0
A115724 Number of partitions with maximum rectangle n.
1, 1, 3, 5, 16, 16, 76, 53, 218, 303, 750, 412, 3680, 1361, 5015, 9206, 23162, 8290, 66166, 19936, 161656, 192181, 236007, 100730, 1338186, 819694, 1180478, 1924986, 5215844, 1246468, 17370367, 3098322, 24926724, 23473968, 24790503, 41886304, 227243488
Offset: 0
Keywords
Examples
The 16 partitions with maximum rectangle 4 are [4], [2^2], [1^4], [4,1], [3,2], [2^2,1], [2,1^3], [4,2], [4,1^2], [3,2,1], [3,1^3], [2^2,1^2], [4,2,1], [4,1^3], [3,2,1^2] and [4,2,1^2].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..100
- Eric Weisstein's World of Mathematics, Ferrers Diagram.
A182099 Total area of the largest inscribed rectangles of all integer partitions of n.
0, 1, 4, 8, 18, 29, 54, 82, 136, 202, 309, 441, 658, 915, 1303, 1790, 2479, 3337, 4541, 6022, 8045, 10554, 13876, 17996, 23409, 30055, 38634, 49208, 62650, 79116, 99898, 125213, 156848, 195339, 242964, 300707, 371770, 457493, 562292, 688451, 841707, 1025484
Offset: 0
Keywords
Comments
Examples
a(4) = 18 = 4+3+4+3+4 because the partitions of 4 are [1,1,1,1], [1,1,2], [2,2], [1,3], [4] and the largest inscribed rectangles have areas 4*1, 3*1, 2*2, 1*3, 1*4. a(5) = 29 = 5+4+4+3+4+4+5 because the partitions of 5 are [1,1,1,1,1], [1,1,1,2], [1,2,2], [1,1,3], [2,3], [1,4], [5].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..175
Programs
-
Maple
b:= proc(n, i, t, k) option remember; `if`(n=0, 1, `if`(i=1, `if`(t+n>k, 0, 1), `if`(i<1, 0, b(n, i-1, t, k) +add(`if`(t+j>k/i, 0, b(n-i*j, i-1, t+j, k)), j=1..n/i)))) end: a:= n-> add(k*(b(n, n, 0, k) -b(n, n, 0, k-1)), k=1..n): seq(a(n), n=0..50);
-
Mathematica
b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i == 1, If[t + n > k, 0, 1], If[i < 1, 0, b[n, i - 1, t, k] + Sum[If[t + j > k/i, 0, b[n - i j, i - 1, t + j, k]], {j, 1, n/i}]]]]; a[n_] := Sum[k(b[n, n, 0, k] - b[n, n, 0, k - 1]), {k, 1, n}]; a /@ Range[0, 50] (* Jean-François Alcover, Dec 06 2020, after Alois P. Heinz *)
Comments
Examples
Links
Crossrefs
Programs
Maple
Mathematica
Formula