cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A144300 Number of partitions of n minus number of divisors of n.

Original entry on oeis.org

0, 0, 1, 2, 5, 7, 13, 18, 27, 38, 54, 71, 99, 131, 172, 226, 295, 379, 488, 621, 788, 998, 1253, 1567, 1955, 2432, 3006, 3712, 4563, 5596, 6840, 8343, 10139, 12306, 14879, 17968, 21635, 26011, 31181, 37330, 44581, 53166, 63259, 75169, 89128, 105554, 124752
Offset: 1

Views

Author

Omar E. Pol, Sep 17 2008

Keywords

Comments

a(n) is also the number of partitions of n with at least one distinct part (i.e., not all parts are equal).

Crossrefs

A182114(n,n-1) = a(n). - Alois P. Heinz, Nov 02 2012

Programs

  • Maple
    with(numtheory): b:= proc(n) option remember; `if`(n=0, 1, add(add(d, d=divisors(j)) *b(n-j), j=1..n)/n) end: a:= n-> b(n)- tau(n):
    seq(a(n), n=1..50);  # Alois P. Heinz, Oct 07 2008
  • Mathematica
    Table[PartitionsP[n]-DivisorSigma[0,n],{n,50}] (* Harvey P. Dale, Apr 10 2014 *)
  • PARI
    al(n)=vector(n,k,numbpart(k)-numdiv(k))
    
  • Python
    from sympy import npartitions, divisor_count
    def A144300(n): return npartitions(n)-divisor_count(n) # Chai Wah Wu, Oct 16 2023

Formula

a(n) = p(n) - d(n) = A000041(n) - A000005(n).

A115725 Number of partitions with maximum rectangle <= n.

Original entry on oeis.org

1, 2, 5, 10, 26, 42, 118, 171, 389, 692, 1442, 1854, 5534, 6895, 11910, 21116, 44278, 52568, 118734, 138670, 300326, 492507, 728514, 829244, 2167430, 2987124, 4167602, 6092588, 11308432, 12554900, 29925267, 33023589, 57950313, 81424281, 106214784, 148101088
Offset: 0

Views

Author

Keywords

Comments

A partition has maximum rectangle <= n iff it is a subpartition of row n of A010766.

Examples

			The 10 partitions with maximum rectangle <= 3: 0: []; 1: [1]; 2: [2], [1^2], [2,1]; 3: [3], [1^3], [3,1], [2,1^2], [3,1^2].
		

Crossrefs

Formula

a(n) = subpart([A115728 (or A115729), [] is row n of A010766.
a(n) = Sum_{k>=0} A182114(k,n). - Alois P. Heinz, Nov 02 2012

A182099 Total area of the largest inscribed rectangles of all integer partitions of n.

Original entry on oeis.org

0, 1, 4, 8, 18, 29, 54, 82, 136, 202, 309, 441, 658, 915, 1303, 1790, 2479, 3337, 4541, 6022, 8045, 10554, 13876, 17996, 23409, 30055, 38634, 49208, 62650, 79116, 99898, 125213, 156848, 195339, 242964, 300707, 371770, 457493, 562292, 688451, 841707, 1025484
Offset: 0

Views

Author

Alois P. Heinz, Apr 11 2012

Keywords

Comments

a(n) >= A000041(n)*A061017(n) for n>0 because the least largest inscribed rectangle of any integer partition of n is A061017(n) and A000041(n) is the number of partitions of n.
a(n) >= A116503(n), the sum of the areas of the Durfee squares of all partitions of n.

Examples

			a(4) = 18 = 4+3+4+3+4 because the partitions of 4 are [1,1,1,1], [1,1,2], [2,2], [1,3], [4] and the largest inscribed rectangles have areas 4*1, 3*1, 2*2, 1*3, 1*4.
a(5) = 29 = 5+4+4+3+4+4+5 because the partitions of 5 are [1,1,1,1,1], [1,1,1,2], [1,2,2], [1,1,3], [2,3], [1,4], [5].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
          `if`(i=1, `if`(t+n>k, 0, 1), `if`(i<1, 0, b(n, i-1, t, k)
          +add(`if`(t+j>k/i, 0, b(n-i*j, i-1, t+j, k)), j=1..n/i))))
        end:
    a:= n-> add(k*(b(n, n, 0, k) -b(n, n, 0, k-1)), k=1..n):
    seq(a(n), n=0..50);
  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i == 1, If[t + n > k, 0, 1], If[i < 1, 0, b[n, i - 1, t, k] + Sum[If[t + j > k/i, 0, b[n - i j, i - 1, t + j, k]], {j, 1, n/i}]]]];
    a[n_] := Sum[k(b[n, n, 0, k] - b[n, n, 0, k - 1]), {k, 1, n}];
    a /@ Range[0, 50] (* Jean-François Alcover, Dec 06 2020, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=1..n} k * A115723(n,k) for n>0, a(0) = 0.
a(n) = Sum_{k=1..n} k * (A182114(n,k) - A182114(n,k-1)).

A218623 Number of partitions of n+2 with largest inscribed rectangle having area <= n.

Original entry on oeis.org

0, 0, 0, 1, 5, 7, 16, 21, 34, 48, 69, 89, 129, 166, 220, 287, 377, 478, 619, 778, 992, 1247, 1565, 1941, 2428, 3000, 3706, 4553, 5594, 6826, 8341, 10129, 12300, 14873, 17962, 21619, 26009, 31175, 37324, 44567, 53164, 63245, 75167, 89118, 105544, 124746, 147261
Offset: 0

Views

Author

Alois P. Heinz, Nov 03 2012

Keywords

Formula

a(n) = A182114(n+2,n).

A218624 Number of partitions of n+3 with largest inscribed rectangle having area <= n.

Original entry on oeis.org

0, 0, 0, 0, 3, 5, 17, 22, 39, 57, 85, 107, 162, 208, 273, 360, 474, 597, 774, 970, 1233, 1553, 1937, 2396, 2991, 3694, 4539, 5572, 6822, 8309, 10125, 12278, 14859, 17950, 21605, 25972, 31171, 37312, 44553, 53132, 63241, 75135, 89114, 105522, 124722, 147249
Offset: 0

Views

Author

Alois P. Heinz, Nov 03 2012

Keywords

Formula

a(n) = A182114(n+3,n).

A218625 Number of partitions of n+4 with largest inscribed rectangle having area <= n.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 16, 21, 43, 65, 101, 125, 202, 253, 336, 444, 591, 736, 964, 1193, 1529, 1917, 2390, 2933, 3678, 4519, 5548, 6782, 8303, 10067, 12272, 14819, 17926, 21585, 25946, 31103, 37306, 44533, 53108, 63181, 75129, 89056, 105516, 124682, 147205, 173480
Offset: 0

Views

Author

Alois P. Heinz, Nov 03 2012

Keywords

Formula

a(n) = A182114(n+4,n).

A218626 Number of partitions of n+5 with largest inscribed rectangle having area <= n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 13, 18, 43, 69, 115, 140, 243, 302, 402, 539, 726, 896, 1183, 1458, 1873, 2356, 2923, 3572, 4489, 5514, 6738, 8231, 10057, 12164, 14809, 17854, 21541, 25912, 31053, 37180, 44523, 53074, 63137, 75017, 89046, 105408, 124672, 147133, 173396
Offset: 0

Views

Author

Alois P. Heinz, Nov 03 2012

Keywords

Formula

a(n) = A182114(n+5,n).

A218627 Number of partitions of n+6 with largest inscribed rectangle having area <= n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 8, 13, 41, 71, 126, 152, 288, 352, 475, 644, 882, 1077, 1444, 1759, 2286, 2871, 3558, 4317, 5466, 6686, 8161, 9939, 12150, 14632, 17840, 21423, 25842, 31001, 37096, 44313, 53060, 63085, 74947, 88858, 105394, 124492, 147119, 173278, 203994
Offset: 0

Views

Author

Alois P. Heinz, Nov 03 2012

Keywords

Formula

a(n) = A182114(n+6,n).

A218628 Number of partitions of n+7 with largest inscribed rectangle having area <= n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 4, 8, 35, 67, 132, 158, 330, 399, 547, 755, 1055, 1276, 1737, 2103, 2757, 3476, 4295, 5184, 6605, 8079, 9823, 11956, 14610, 17544, 21401, 25646, 30885, 37014, 44169, 52707, 63063, 74865, 88742, 105074, 124470, 146816, 173256, 203798, 239540
Offset: 0

Views

Author

Alois P. Heinz, Nov 03 2012

Keywords

Formula

a(n) = A182114(n+7,n).

A218629 Number of partitions of n+8 with largest inscribed rectangle having area <= n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 4, 27, 59, 132, 158, 371, 443, 619, 871, 1246, 1493, 2073, 2485, 3306, 4175, 5154, 6177, 7955, 9703, 11782, 14312, 17514, 20942, 25616, 30583, 36838, 44049, 52479, 62509, 74835, 88622, 104898, 123964, 146786, 172780, 203768, 239236, 280917
Offset: 0

Views

Author

Alois P. Heinz, Nov 03 2012

Keywords

Formula

a(n) = A182114(n+8,n).
Showing 1-10 of 12 results. Next