cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A115738 k is prime and digits of k^2 include digits of k as substring.

Original entry on oeis.org

5, 66952741, 146509717, 753348181, 562984507451, 860628177919, 978058181203, 50385563791193
Offset: 1

Views

Author

Giovanni Resta, Jan 30 2006

Keywords

Comments

Subset of A046831.
a(9) > 10^14. Primes 43473168442554675203, 20944025626422831137347, 35083931242599287584057, and 569177878099445999493598065089 are also terms. - Giovanni Resta, Sep 10 2018

Examples

			66952741^2 = 4482_66952741_3081.
		

Crossrefs

Extensions

a(8) from Giovanni Resta, Sep 08 2018

A115762 Numbers k such that the digits of k^3, reversed, include the digits of k as substring.

Original entry on oeis.org

1, 4, 5, 6, 9, 39, 67, 99, 670, 735, 999, 2424, 5619, 6700, 6966, 9999, 14597, 15458, 29266, 33795, 43259, 49664, 61256, 69566, 75463, 80238, 97155, 99999, 123798, 190544, 290105, 292660, 424068, 424846, 429163, 432590, 625503, 658458
Offset: 1

Views

Author

Giovanni Resta, Jan 30 2006

Keywords

Examples

			735^3 = 39706(537)5.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[660000],SequenceCount[IntegerDigits[IntegerReverse[#^3]],IntegerDigits[#]]>0&] (* Harvey P. Dale, May 13 2025 *)

A115764 Primes p such that the digits of p^3, reversed, include the digits of p as a substring.

Original entry on oeis.org

5, 67, 695263, 994871, 5616469, 31471711, 43693817, 878757569, 5149409929, 7866434053, 8603497223, 13880125751
Offset: 1

Views

Author

Giovanni Resta, Jan 30 2006

Keywords

Examples

			31471711^3 = 3(11717413)21891966598431.
		

Crossrefs

A273007 a(n) is the smallest exponent > 1 such that p^a(n) ends with p, where p is the n-th prime.

Original entry on oeis.org

5, 5, 2, 5, 11, 21, 21, 11, 21, 11, 11, 21, 6, 5, 21, 21, 11, 6, 21, 11, 21, 11, 21, 11, 21, 11, 101, 21, 51, 101, 101, 51, 101, 51, 11, 11, 21, 101, 101, 101, 51, 51, 51, 5, 101, 11, 51, 101, 101, 51, 101, 51, 26, 3, 21, 101, 51, 51, 101, 26, 101, 21, 5, 51
Offset: 1

Views

Author

Paolo P. Lava, May 24 2016

Keywords

Examples

			2^2 = 4, 2^3 = 8, 2^4 = 16, 2^5 = 32;
3^2 = 9, 3^3 = 27, 3^4 = 81, 3^5 = 243.
		

Crossrefs

Programs

  • Maple
    P:=proc(q) local d,k,n; for n from 1 to q do if isprime(n) then d:=ilog10(n)+1;
    for k from 2 to q do if n=(n^k mod 10^d) then print(k); break; fi; od; fi; od; end: P(10^3);
  • Mathematica
    Table[Length[NestWhileList[p #&,p^2,Mod[#,10^IntegerLength[p]]!=p&]]+1,{p,Prime[ Range[65]]}] (* Harvey P. Dale, Jul 25 2019 *)
Showing 1-4 of 4 results.