cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A115786 Smallest prime number p such that p + 2#, p + 3#, ..., p + prime(n)# are all prime, where x# = A034386(x) is the primorial.

Original entry on oeis.org

3, 5, 11, 17, 41, 41, 41, 41, 86351, 86351, 235313357, 729457511, 99445156397, 818113387907, 7986903815771, 29065965967667
Offset: 1

Views

Author

Rick L. Shepherd, Jan 31 2006

Keywords

Comments

Subset of A001359 (lesser of twin primes).
From a(2) = 5 on, also a subset of A022004: first element of prime triples (p, p+2, p+6).-- It could make sense to add a(0) = 2, the smallest prime (with empty further restriction "p + prime(n)# prime for 1 <= n <= 0"). - M. F. Hasler, Apr 29 2015

Examples

			a(11) = 235313357 because 235313357, 235313357 + 2, 235313357 + 2*3, 235313357 + 2*3*5, ... and 235313357 + 2*3*5*7*11*13*17*19*23*29*31 are all prime and there is no smaller prime with this property.
		

Crossrefs

Cf. A001359, A002110, A115785 (for p - p(i)#).

Extensions

a(12) from Don Reble, Feb 15 2006
More terms from Jens Kruse Andersen, Feb 28 2006

A380450 Number of integers k such that prime(n) - primorial(k) is prime.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 3, 2, 2, 2, 2, 2, 1, 3, 1, 1, 2, 1, 1, 3, 1, 3, 2, 1, 1, 2, 2, 0, 1, 2, 1, 1, 1, 2, 2, 0, 2, 2, 2, 1, 2, 2, 4, 2, 2, 3, 1, 3, 3, 3, 3, 2, 2, 3, 2, 2, 2, 4, 2, 0, 3, 2, 2, 1, 2, 2, 2, 2, 2, 3, 1, 1, 2, 1, 2, 1, 2, 3, 1, 3, 0, 2, 3
Offset: 1

Views

Author

Daniel D Gibson, Jun 22 2025

Keywords

Comments

Conjecture A: Each value occurs an infinite number of times in the sequence.
Conjecture B: All natural numbers occur in the sequence.

Examples

			For prime(n=6): 13 - 2 = 11, and 13 - 6 = 7, so a(6) = 2.
		

Crossrefs

Cf. A385210, A000040, A002110, A175974 (zeros (primes)), A115785 (record positions (primes)).

Programs

  • Mathematica
    a[n_]:=Module[{c=0},Do[d=Prime[n]-Fold[Times, 1, Prime[Range[k-1]]];If[PrimeQ[d]&&d>0,c++],{k,n}];c];Array[a,90] (* James C. McMahon, Jun 27 2025 *)
  • PARI
    pri(n) = vecprod(primes(n)); \\ A002110
    a(n) = my(nb=0, p=prime(n)); for (k=0, n, if (isprime(p-pri(k)), nb++); ); nb; \\ Michel Marcus, Jun 22 2025

Extensions

More terms from Michel Marcus, Jun 22 2025
Showing 1-2 of 2 results.