A115791 Number of different ways to select n elements from five sets of n elements under the precondition of choosing at least one element from each set.
0, 0, 0, 0, 3125, 97200, 1932805, 31539200, 461828790, 6332578125, 83235183075, 1063505908080, 13327125965725, 164758298214965, 2017489363833125, 24538128923443200, 297028957324770140, 3583456866615114630
Offset: 1
Keywords
Examples
a(6)=binomial(30,6)-5*binomial(24,6)+10*binomial(18,6)-10*binomial(12,6)+5=97200;
Programs
-
Mathematica
Table[Binomial[5n,n]-5Binomial[4n,n]+10Binomial[3n,n]-10Binomial[2n,n]+5,{n,20}] (* Harvey P. Dale, Nov 06 2011 *)
Formula
a(n) = binomial(5*n,n)-5*binomial(4*n,n)+10*binomial(3*n,n)-10*binomial(2*n,n)+5; ; also: a(n)=sum{binomial(n,i)*binomial(n,j)*binomial(n,k)*binomial(n,l)*binomial(n,m)||i,j,k,l,m=1...(n-4),i+j+k+l+m=n}. General formula for N sets with m elements each: the number of different ways to select k elements from j different sets: G(N,m,j,k) = binomial(N,j)*sum(binomial(j,i)*binomial(i*m,k)*(-1)^i*(-1)^j|i=1...j); Recursion formula: G(N,m,j,k) = binomial(N,j)*binomial(j*m,k) - sum(binomial(N-i,j-i)*G(N,m,i,k)|i=1...j-1);
Comments