cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115791 Number of different ways to select n elements from five sets of n elements under the precondition of choosing at least one element from each set.

Original entry on oeis.org

0, 0, 0, 0, 3125, 97200, 1932805, 31539200, 461828790, 6332578125, 83235183075, 1063505908080, 13327125965725, 164758298214965, 2017489363833125, 24538128923443200, 297028957324770140, 3583456866615114630
Offset: 1

Views

Author

Hieronymus Fischer, Jan 31 2006

Keywords

Comments

The number of different ways to select n elements from five sets of n elements under the precondition of choosing at least one element from each set.

Examples

			a(6)=binomial(30,6)-5*binomial(24,6)+10*binomial(18,6)-10*binomial(12,6)+5=97200;
		

Crossrefs

Programs

  • Mathematica
    Table[Binomial[5n,n]-5Binomial[4n,n]+10Binomial[3n,n]-10Binomial[2n,n]+5,{n,20}] (* Harvey P. Dale, Nov 06 2011 *)

Formula

a(n) = binomial(5*n,n)-5*binomial(4*n,n)+10*binomial(3*n,n)-10*binomial(2*n,n)+5; ; also: a(n)=sum{binomial(n,i)*binomial(n,j)*binomial(n,k)*binomial(n,l)*binomial(n,m)||i,j,k,l,m=1...(n-4),i+j+k+l+m=n}. General formula for N sets with m elements each: the number of different ways to select k elements from j different sets: G(N,m,j,k) = binomial(N,j)*sum(binomial(j,i)*binomial(i*m,k)*(-1)^i*(-1)^j|i=1...j); Recursion formula: G(N,m,j,k) = binomial(N,j)*binomial(j*m,k) - sum(binomial(N-i,j-i)*G(N,m,i,k)|i=1...j-1);