cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115866 a(n) = g(n,n,n) where g(a, b, c) is defined as follows: if a = 0 or b = 0 or c = 0 then return 1 otherwise return g(a, b, c-1) + g(a, b-1, c) + g(a-1, b, c) + g(a, b-1, c-1) + g(a-1, b, c-1) + g(a-1, b-1, c) + g(a-1, b-1, c-1).

Original entry on oeis.org

1, 7, 157, 5419, 220561, 9763807, 454635973, 21894817147, 1080094827649, 54250971690007, 2763339510402637, 142338478909290187, 7399210542653679985, 387578046480606144079, 20433042381373273363477, 1083193405190852829195259, 57697563083258107660231681
Offset: 0

Views

Author

Al Zimmermann, Apr 02 2006

Keywords

Comments

A generalization of the recurrence in A001850. The original description of this sequence was the same as that of A126086. The correct explanation for these terms was provided by Nick Hobson, Mar 03 2007.

Crossrefs

Column k=3 of A263159.

Programs

  • Maple
    g():= seq(convert(n, base, 2)[1..3], n=9..15):
    b:= proc(l) option remember;
          `if`(l[1]=0, 1, add(b(sort(l-h)), h=g()))
        end:
    a:= n-> b([n$3]):
    seq(a(n), n=0..25);  # Alois P. Heinz, Oct 14 2015
  • Mathematica
    g[] = Table[Reverse[IntegerDigits[n, 2]][[;; 3]], {n, 2^3 + 1, 2^4 - 1}];
    b[l_] := b[l] = If[l[[1]] == 0, 1, Sum[b[Sort[l - h]], {h, g[]}]];
    a[n_] := b[Table[n, {3}]];
    a /@ Range[0, 25] (* Jean-François Alcover, Apr 25 2020, after Alois P. Heinz *)

Formula

D-finite with recurrence: 2*(n-1)^2*(2*n-1)*(243*n^5 - 3159*n^4 + 16254*n^3 - 41325*n^2 + 51838*n - 25620)*a(n) = (53703*n^8 - 887922*n^7 + 6273882*n^6 - 24692601*n^5 + 59070956*n^4 - 87717383*n^3 + 78694087*n^2 - 38816698*n + 8003688)*a(n-1) + (94527*n^8 - 1549611*n^7 + 10848681*n^6 - 42278007*n^5 + 100087538*n^4 - 147021644*n^3 + 130465402*n^2 - 63678226*n + 13003980)*a(n-2) - (31833*n^8 - 541890*n^7 + 3945213*n^6 - 16007835*n^5 + 39486422*n^4 - 60435299*n^3 + 55812796*n^2 - 28273516*n + 5965068)*a(n-3) + (n-3)*(3159*n^7 - 48114*n^6 + 301212*n^5 - 1002003*n^4 + 1908157*n^3 - 2073535*n^2 + 1184960*n - 272792)*a(n-4) - 2*(n-4)^2*(n-3)*(243*n^5 - 1944*n^4 + 6048*n^3 - 9087*n^2 + 6529*n - 1769)*a(n-5). - Vaclav Kotesovec, Nov 27 2016
a(n) ~ (12*2^(2/3)+15*2^(1/3)+19)^n / (2^(4/3)*3^(1/2)*Pi*n). - Vaclav Kotesovec, Nov 27 2016

Extensions

Edited by N. J. A. Sloane following email from Nick Hobson, Mar 03 2007
More terms from Alois P. Heinz, Sep 30 2015