cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A115896 Numbers k such that k + phi(k) is a palindrome.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 17, 21, 61, 63, 71, 142, 157, 167, 183, 184, 190, 197, 201, 213, 215, 219, 237, 255, 263, 283, 284, 293, 305, 322, 325, 338, 359, 375, 379, 389, 395, 407, 412, 427, 445, 452, 458, 459, 460, 483, 535, 539, 549, 566, 568, 586, 595, 603, 941
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			183 + phi(183) = 183 + 120 = 303.
		

Crossrefs

Cf. A121048 (n+phi(n)).

Programs

  • Maple
    ispali:= proc(n) local L; L:= convert(n,base,10); andmap(t -> L[t]=L[-t], [$1..nops(L)/2]) end proc:
    select(t -> ispali(t+numtheory:-phi(t)), [$1..1000]); # Robert Israel, Sep 19 2022
  • Mathematica
    nppQ[n_]:=Module[{idn=IntegerDigits[n+EulerPhi[n]]},idn==Reverse[idn]]; Select[Range[1000],nppQ] (* Harvey P. Dale, Aug 18 2013 *)
  • PARI
    ispal(n) = my(d=digits(n)); d == Vecrev(d) \\ A002113
    isok(k) = ispal(k+eulerphi(k)) \\ Alexandru Petrescu, Sep 19 2022

A115897 Numbers k such that sigma(k) + phi(k) is a palindrome.

Original entry on oeis.org

1, 2, 3, 4, 10, 11, 21, 49, 92, 101, 115, 131, 145, 186, 200, 201, 206, 207, 221, 226, 227, 240, 272, 302, 310, 313, 327, 342, 344, 370, 374, 388, 403, 406, 409, 413, 419, 425, 439, 449, 880, 948, 1015, 1055, 1132, 1165, 1385, 1443, 1680, 1755, 1785
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			sigma(1055) + phi(1055) = 1272 + 840 = 2112.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 1800, Reverse@ # == # &@ IntegerDigits[DivisorSigma[1, #] + EulerPhi@ #] &] (* Michael De Vlieger, Jul 22 2016 *)
    Select[Range[2000],PalindromeQ[DivisorSigma[1,#]+EulerPhi[#]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 29 2020 *)
  • PARI
    ispal(n)=n=digits(n); Vecrev(n)==n
    is(n,f=factor(n))=ispal(sigma(f)+eulerphi(f)) \\ Charles R Greathouse IV, Jul 22 2016

A115898 Numbers k such that sigma(k) + prime(k) is a palindrome.

Original entry on oeis.org

1, 2, 3, 13, 17, 36, 56, 78, 80, 83, 86, 119, 135, 178, 185, 226, 227, 235, 378, 422, 443, 579, 629, 651, 910, 1230, 1277, 1331, 1344, 1432, 1644, 1734, 1740, 1758, 1772, 1794, 1827, 1847, 1973, 2021, 2730, 2874, 2878, 2979, 2981, 3169, 3229
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			sigma(1344) + prime(1344) = 4064 + 11087 = 15151.
		

Crossrefs

A115900 Numbers k such that k + sigma(k) and k + phi(k) are palindromes.

Original entry on oeis.org

1, 2, 3, 4, 5, 219, 322, 375, 22248, 32065, 47827, 1406744, 2144055, 2991368, 3626587, 4909369, 172133971, 177457001, 328030055, 3128669654, 8345867631, 19649249526, 45179367929, 47228405729, 48534773039, 49583585599, 2127577449846, 2191781701563, 3972961263797
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

Intersection of A115895 and A115896.
a(27) > 10^11. 3972961263797 is also a term. - Donovan Johnson, May 31 2013
a(30) > 10^13. - Giovanni Resta, Jun 05 2013

Examples

			4909369 + sigma(4909369) = 9823289 and 4909369 + phi(4909369) = 9814189.
		

Crossrefs

Extensions

a(17)-a(26) from Donovan Johnson, Oct 05 2010
a(27)-a(29) from Giovanni Resta, Jun 05 2013
Showing 1-4 of 4 results.