A115941 a(n) is the least prime whose representation contains a palindromic substring of length n.
2, 11, 101, 11113, 10301, 1011013, 1003001, 100110013, 100030001, 10000000019, 10000500001, 1000011000017, 1000008000001, 100000440000011, 100000323000001, 10000001100000011, 10000000500000001, 1000000011000000019, 1000000008000000001, 100000000660000000013
Offset: 1
Examples
a(6)=1011013 since it is the least prime that contains a palindromic substring (101101) of length 6.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..25
Crossrefs
Cf. A056732.
Programs
-
Python
from sympy import isprime from itertools import product def pals_to_test(n, odd=True): if n <= 2: yield [2, 11][n-1] if odd: ruled_out = "024568" # can't be even or multiple of 5 else: ruled_out = "0" midrange = [[""], [str(i) for i in range(10)]] for p in product("0123456789", repeat=n//2): left = "".join(p) if len(left): if left[0] in ruled_out: continue for middle in midrange[n%2]: out = left+middle+left[::-1] if odd: yield out else: for last in "1379": yield out+last def a(n): palsgen = pals_to_test(n, n%2 == 1) while True: strpal = next(palsgen) pal = int(strpal) if isprime(pal): return pal print([a(n) for n in range(1, 18)]) # Michael S. Branicky, Feb 11 2021
Extensions
a(18) and beyond from Michael S. Branicky, Feb 11 2021