A115952 Expansion of (1-x+x*y)/(1-x^2*y^2) - x^2/(1-x^2*y).
1, -1, 1, -1, 0, 1, 0, 0, -1, 1, 0, -1, 0, 0, 1, 0, 0, 0, 0, -1, 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, -1
Offset: 0
Examples
Triangle begins 1, -1, 1, -1, 0, 1, 0, 0, -1, 1, 0, -1, 0, 0, 1, 0, 0, 0, 0, -1, 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Crossrefs
Cf. A115524.
Programs
-
Magma
[[n eq k select 1 else n eq k+1 select -(1+(-1)^k)/2 else n eq 2*(k+1) select -1 else 0: k in [0..n]]: n in [0..15]]; // G. C. Greubel, May 06 2019
-
Mathematica
T[n_, k_]:= If[n==k, 1, If[n==k+1, -(1+(-1)^k)/2, If[n==2*k+2, -1, 0]]]; Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, May 06 2019 *)
-
PARI
{T(n,k) = if(n==k, 1, if(n==k+1, -(1+(-1)^k)/2, if(n==2*k+2, -1, 0)))}; \\ G. C. Greubel, May 06 2019
-
Sage
def T(n, k): if (n==k): return 1 elif (n==k+1): return -(1+(-1)^k)/2 elif (n==2*(k+1)): return -1 else: return 0 [[T(n, k) for k in (0..n)] for n in (0..15)] # G. C. Greubel, May 06 2019
Formula
Number triangle T(n,k)=if(n=k,1,0) OR if(n=2k+2,-1,0) OR if(n=k+1,-(1+(-1)^k)/2,0).
Comments