A115970 Expansion of 1/(4*sqrt(1-4*x) - 3).
1, 8, 72, 656, 5992, 54768, 500688, 4577568, 41851560, 382641200, 3498428272, 31985610720, 292439802256, 2673735097184, 24445577182368, 223502416896576, 2043450657688872, 18682977401318064, 170815793235313968
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 20); Coefficients(R!( 1/(4*Sqrt(1-4*x)-3) )); // G. C. Greubel, May 05 2019 -
Mathematica
CoefficientList[Series[1/(4*Sqrt[1-4*x]-3), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 19 2012 *)
-
PARI
my(x='x+O('x^20)); Vec(1/(4*sqrt(1-4*x)-3)) \\ G. C. Greubel, May 05 2019
-
Sage
(1/(4*sqrt(1-4*x)-3)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 05 2019
Formula
G.f.: 1/(1-8*x*c(x)), where c(x) is the g.f. of A000108.
a(n) = Sum_{k=0..n} A106566(n, k)*8^k.
From Philippe Deléham, Feb 13 2007: (Start)
a(n) = (64*a(n-1) - 8*A000108(n-1))/7.
a(n) = Sum_{k=0..n} A039599(n,k)*7^k.
a(n) = Sum_{k=0..n} A106566(n,k)*8^k. (End)
D-finite with recurrence: 7*n*a(n) = 2*(46*n-21)*a(n-1) - 128*(2*n-3)*a(n-2). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ 3*2^(6*n+1)/7^(n+1). - Vaclav Kotesovec, Oct 19 2012
Comments