A115990 Riordan array (1/sqrt(1-2*x-3*x^2), (1-2*x-3*x^2)/(2*(1-3*x)) - sqrt(1-2*x-3*x^2)/2).
1, 1, 1, 3, 2, 1, 7, 5, 3, 1, 19, 13, 8, 4, 1, 51, 35, 22, 12, 5, 1, 141, 96, 61, 35, 17, 6, 1, 393, 267, 171, 101, 53, 23, 7, 1, 1107, 750, 483, 291, 160, 77, 30, 8, 1, 3139, 2123, 1373, 839, 476, 244, 108, 38, 9, 1, 8953, 6046, 3923, 2423, 1406, 752, 360, 147, 47, 10
Offset: 0
Examples
Triangle begins 1; 1, 1; 3, 2, 1; 7, 5, 3, 1; 19, 13, 8, 4, 1; 51, 35, 22, 12, 5, 1; 141, 96, 61, 35, 17, 6, 1;
Links
- G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
Programs
-
GAP
Flat(List([0..10], n-> List([0..n], k-> Sum([0..n], j-> Binomial(n-k, j-k)*Binomial(j, n-j)) ))); # G. C. Greubel, May 09 2019
-
Magma
[[(&+[Binomial(n-k, j-k)*Binomial(j, n-j): j in [0..n]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, May 09 2019
-
Maple
A115990 := proc(n,k) add(binomial(n-k,j-k)*binomial(j,n-j),j=0..n) ; end proc: seq(seq(A115990(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Jun 25 2023
-
Mathematica
Table[Sum[ Binomial[n-k, j-k]*Binomial[j, n-j], {j, 0, n}], {n, 0, 10}, {k, 0, n} ] // Flatten (* G. C. Greubel, Mar 07 2017 *)
-
PARI
{T(n, k) = sum(j=0, n, binomial(n-k, j-k)*binomial(j, n-j))}; \\ G. C. Greubel, May 09 2019
-
Sage
[[sum(binomial(n-k, j-k)*binomial(j, n-j) for j in (0..n)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 09 2019
Formula
Number triangle T(n,k) = Sum_{j=0..n} C(n-k,j-k)*C(j,n-j).
Comments