A115992 Number of non-attacking queens that can be placed on a "hyper-chessboard" = hypercube of size 3, dimension n. That is, the size of the largest subset S of {0,1,2}^n such that for each pair (x0,y0,...), (x1,y1,...) of distinct elements of S, the absolute differences vector (|x1-x0|, |y1-y0|, ...) has at least two distinct non-null coordinates.
1, 1, 2, 4, 6, 11, 19, 32, 52
Offset: 0
Examples
a(3)>=4 because we can place 4 queens on a cubic chessboard, as follows: S = {(0,0,0), (1,2,0), (0,1,2), (2,0,1)}. A further queen cannot be placed at (1,0,2), for instance, because that position is attacked by (2,0,1) (and also, incidentally, by (1,2,0) and (0,1,2), but not by (0,0,0)).
Comments