cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116092 Expansion of 1/sqrt(1+8*x+64*x^2).

Original entry on oeis.org

1, -4, -8, 224, -1184, -2944, 84736, -467968, -1235456, 35956736, -202108928, -548651008, 16063381504, -91151859712, -251452325888, 7389369073664, -42180470767616, -117581870006272, 3464100777558016, -19854347412176896, -55753417460547584, 1645577388148391936
Offset: 0

Views

Author

Paul Barry, Feb 04 2006

Keywords

Comments

8th binomial transform is expansion of 1/sqrt(1-8*x+64*x^2).

Crossrefs

Cf. A116091.

Programs

  • GAP
    List([0..30], n-> 2^n*Sum([0..n], k-> (-3)^k*Binomial(n,k)* Binomial(n, n-k))); # G. C. Greubel, May 10 2019
  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 1/Sqrt(1+8*x+64*x^2) )); // G. C. Greubel, May 10 2019
    
  • Mathematica
    CoefficientList[Series[1/Sqrt[1+8*x+64*x^2], {x, 0, 30}], x] (* G. C. Greubel, May 10 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec(1/sqrt(1+8*x+64*x^2)) \\ G. C. Greubel, May 10 2019
    
  • Sage
    (1/sqrt(1+8*x+64*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 10 2019
    

Formula

E.g.f.: exp(-4*x)*Bessel_I(0, 2*sqrt(-12)*x).
a(n) = 2^n*Sum_{k=0..n} C(n,n-k)*C(n,k)*(-3)^k.
a(n) = 2^n*A116091(n).
D-finite with recurrence: n*a(n) +4*(2*n-1)*a(n-1) +64*(n-1)*a(n-2)=0. - R. J. Mathar, Nov 07 2012