cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A115431 Numbers k such that the concatenation of k with k-2 gives a square.

Original entry on oeis.org

6, 5346, 8083, 10578, 45531, 58626, 2392902, 2609443, 7272838, 51248898, 98009803, 159728062051, 360408196038, 523637103531, 770378933826, 998000998003, 1214959556998, 1434212848998, 3860012299771, 4243705560771
Offset: 1

Views

Author

Giovanni Resta, Jan 24 2006

Keywords

Comments

From Robert Israel, Feb 20 2019: (Start) The same as A116117 and A116135 (see link).
So there are two equivalent definitions: numbers k such that k concatenated with k-6 gives the product of two numbers which differ by 4; and numbers k such that k concatenated with k-3 gives the product of two numbers which differ by 2.
For each k >= 1, 10^(4*k)-2*10^(3*k)+10^(2*k)-2*10^k+3 is a term.
If k is a term and k-2 has length m, then all prime factors of 10^m+1 must be congruent to 1 or 3 (mod 8). In particular, we can't have m == 2 (mod 4) or m == 3 (mod 6), as in those cases 10^m+1 would be divisible by 101 or 7 respectively. (End)

Examples

			8083_8081 = 8991^2.
98009803_98009800 = 98999900 * 98999902, where _ denotes
concatenation
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local S;
      S:= map(t -> rhs(op(t))^2 mod 10^n+2, [msolve(x^2+2,10^n+1)]);
      op(sort(select(t -> t-2 >= 10^(n-1) and t-2 < 10^n and issqr(t-2 + t*10^n), S)))
    end proc:
    seq(f(n),n=1..20); # Robert Israel, Feb 20 2019

A116135 Duplicate of A115431.

Original entry on oeis.org

6, 5346, 8083, 10578, 45531, 58626, 2392902, 2609443, 7272838, 51248898, 98009803, 159728062051, 360408196038, 523637103531, 770378933826, 998000998003, 1214959556998, 1434212848998, 3860012299771, 4243705560771
Offset: 1

Views

Author

Keywords

Crossrefs

Showing 1-2 of 2 results.