cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A115432 Numbers k such that the concatenation of k with k-4 gives a square.

Original entry on oeis.org

65, 6653, 9605, 218413, 283720, 996005, 58446925, 99960005, 6086712229, 7385370133, 8478948853, 9999600005, 120178240093, 161171620229, 358247912200, 426843573160, 893417179213, 999996000005, 23376713203604
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Comments

The terms of this sequence (k//k-4 = m*m), A116104 (k//k-8 = m*(m+4)) and A116121 (k//k-5 = m*(m+2)) agree as long as the two concatenated numbers k and k-x have the same length. This condition is satisfied for the given terms of all three sequences. - Georg Fischer, Sep 12 2022
From Robert Israel, Sep 13 2023: (Start)
Numbers k of the form (y^2+4)/(10^d + 1) where 10^(d-1) <= k - 4 < 10^d and y is a square root of -4 mod (10^d + 1).
Includes 10^(2*d) - 4*10^d + 5 for all d >= 1, as the concatenation of this with 10^(2*d) - 4*10^d + 1 is 10^(4*d) - 4 * 10^(3*d) + 6 * 10^(2*d) - 4 * 10^d + 1 = (10^d - 1)^4.
This is the same sequence as A116104 and A116121. The only possible differences would be if 10^(d-1) + 4 <= k <= 10^(d-1) + 7 or 10^d + 4 <= k <= 10^d + 7, so that k - 4 and k - 8 have different numbers of digits.
But in none of those cases can (10^d + 1)*k - 4 be a square:
If k = 10^(d-1) + 4 or 10^d + 4, (10^d + 1)*k - 4 == 6 (mod 9).
If k = 10^(d-1) + 5 or 10^d + 5, (10^d + 1)*k - 4 == 2 (mod 3).
If k = 10^(d-1) + 6 or 10^d + 6, (10^d + 1)*k - 4 == 2 (mod 10).
If k = 10^(d-1) + 7 or 10^d + 7, (10^d + 1)*k - 4 == 3 (mod 10). (End)

Examples

			9605_9601 = 9801^2.
		

Crossrefs

Programs

  • Maple
    f:= proc(d) uses NumberTheory; local m,r;
      m:= 10^d + 1;
      if QuadraticResidue(-4,m) = -1 then return NULL fi;
      r:= ModularSquareRoot(-4, m);
      op(sort(select(t -> t >= 10^(d-1)+4 and t < 10^d+4, map(t -> ((r*t mod m)^2+4)/m, convert(RootsOfUnity(2,m),list)))))
    end proc:
    map(f, [$1..20]); # Robert Israel, Sep 12 2023

A116116 Numbers k such that k concatenated with k-6 gives the product of two numbers which differ by 2.

Original entry on oeis.org

21, 30, 902406, 959721, 6040059046, 6242406405, 9842410005, 9900249006, 15033519988494, 17250863148969, 22499666270469, 27632040031654, 34182546327286, 37487353123861, 52213551379230, 74230108225630
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			9900249006//9900249000 = 9949999500 * 9949999502, where // denotes concatenation.
		

Crossrefs

A116252 n times n+2 gives the concatenation of two numbers m and m-5.

Original entry on oeis.org

80, 8156, 9800, 467346, 532653, 998000, 76450588, 99980000, 7801738414, 8593817622, 9208120792, 9999800000, 346667333466, 401461854014, 598538145985, 653332666533, 945207479452, 999998000000, 48349470735059
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Crossrefs

A116120 Numbers k such that k concatenated with k-5 gives the product of two numbers which differ by 1.

Original entry on oeis.org

7, 55, 5255, 6295, 75511, 92137, 5551405, 7943911, 1257669432489239675, 2148743977942130765, 2877834685014859837, 4164942361780146967, 10235898967817894552965, 15389481849681116007757
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Crossrefs

A116122 Numbers k such that k concatenated with k-5 gives the product of two numbers which differ by 3.

Original entry on oeis.org

92185, 1453156572932210152879253333913, 3829098407015032018435618903285, 1017438814759112270449904796121753809
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			92185//92180 = 96012 * 96015, where // denotes concatenation.
		

Crossrefs

A116135 Duplicate of A115431.

Original entry on oeis.org

6, 5346, 8083, 10578, 45531, 58626, 2392902, 2609443, 7272838, 51248898, 98009803, 159728062051, 360408196038, 523637103531, 770378933826, 998000998003, 1214959556998, 1434212848998, 3860012299771, 4243705560771
Offset: 1

Views

Author

Keywords

Crossrefs

Showing 1-6 of 6 results.