cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116127 Number of numbers that are congruent to {2, 4} mod 6 between prime(n) and prime(n+1) inclusive.

Original entry on oeis.org

1, 1, 0, 2, 0, 2, 0, 2, 2, 0, 2, 2, 0, 2, 2, 2, 0, 2, 2, 0, 2, 2, 2, 2, 2, 0, 2, 0, 2, 4, 2, 2, 0, 4, 0, 2, 2, 2, 2, 2, 0, 4, 0, 2, 0, 4, 4, 2, 0, 2, 2, 0, 4, 2, 2, 2, 0, 2, 2, 0, 4, 4, 2, 0, 2, 4, 2, 4, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 0, 4, 0, 2, 2, 2, 2, 2, 0, 2, 4, 2, 2, 2, 2, 2, 4, 0, 6, 2, 4, 2, 2, 0, 2
Offset: 1

Views

Author

Giovanni Teofilatto, Apr 08 2007

Keywords

Comments

For n > 2,
A001223(n) = 2 iff a(n) = 0,
A001223(n) = 4 or 6 or 8 iff a(n) = 2,
A001223(n) = 10 or 12 or 14 iff a(n) = 4,
A001223(n) = 16 or 18 or 20 iff a(n) = 6,
and so on. This can be generalized to
A001223(n) = 3*k-2 or 3*k or 3*k+2 iff a(n) = k for k >= 2.

Crossrefs

Cf. A000040 (primes), A001223 (differences between consecutive primes), A047235 (numbers congruent to {2, 4} mod 6), A002654.

Programs

  • Magma
    [ #[ k: k in [NthPrime(n)..NthPrime(n+1)] | r eq 2 or r eq 4 where r is k mod 6 ]: n in [1..105] ]; /* Klaus Brockhaus, Apr 15 2007 */
  • Maple
    P:= select(isprime, [seq(i,i=5..1000,2)]):
    Delta:= P[2..-1]-P[1..-2]:
    f:= t -> (t + 2*(t+1 mod 3) - 2)/3:
    1,1,op(map(f, Delta)); # Robert Israel, Jun 19 2019
  • Mathematica
    s={};Do[c=0;Do[If[MemberQ[{2,4},Mod[i,6]],c=c+1],{i,Prime[n],Prime[n+1]}];AppendTo[s,c],{n,105}];s (* James C. McMahon, Aug 18 2024 *)

Extensions

Edited, corrected and extended by Klaus Brockhaus, Apr 15 2007