cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116155 Triangle T(n,k) defined by: T(0,0)=1, T(n,k)=0 if k < 0 or k > n, T(n,k) = T(n-1,k-1) + k*T(n-1,k) + Sum_{j>=1} T(n-1,k+j).

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 3, 3, 1, 7, 9, 10, 6, 1, 26, 33, 36, 29, 10, 1, 109, 135, 145, 134, 70, 15, 1, 500, 609, 645, 633, 430, 146, 21, 1, 2485, 2985, 3130, 3142, 2521, 1182, 273, 28, 1, 13262, 15747, 16392, 16561, 14710, 8733, 2849, 470, 36, 1
Offset: 0

Views

Author

Philippe Deléham, Apr 15 2007

Keywords

Examples

			Triangle begins:
      1;
      0,     1;
      1,     1,     1;
      2,     3,     3,     1;
      7,     9,    10,     6,     1;
     26,    33,    36,    29,    10,    1;
    109,   135,   145,   134,    70,   15,    1;
    500,   609,   645,   633,   430,  146,   21,   1;
   2485,  2985,  3130,  3142,  2521, 1182,  273,  28,  1;
  13262, 15747, 16392, 16561, 14710, 8733, 2849, 470, 36, 1;
		

Programs

  • Mathematica
    T[0, 0]:= 1; T[n_, k_]:= If[k<0 || k>n, 0, T[n-1, k-1] + k*T[n-1, k] + Sum[T[n-1, k+j], {j, 1, n-k-1}]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, May 10 2019 *)
  • PARI
    {T(n,k) = if(k==0 && n==0, 1, if(k<0 || k>n, 0, T(n-1, k-1) + k*T(n-1, k) + sum(j=1,n-k-1, T(n-1, k+j))))}; \\ G. C. Greubel, May 10 2019

Formula

Sum_{k=0..n} T(n,k) = T(n+1,1) = A098742(n+2).

Extensions

Term a(47) corrected in data by G. C. Greubel, May 12 2019