A116191 Decimal expansion of imaginary part of i^(i^i), that is, Im(i^(i^i)).
3, 2, 0, 7, 6, 4, 4, 4, 9, 9, 7, 9, 3, 0, 8, 5, 3, 4, 6, 6, 0, 1, 1, 6, 8, 4, 5, 8, 7, 4, 8, 6, 3, 1, 4, 0, 1, 0, 2, 3, 6, 7, 0, 2, 0, 6, 8, 1, 2, 7, 6, 7, 9, 9, 8, 2, 9, 6, 5, 7, 1, 6, 8, 7, 4, 0, 7, 5, 5, 2, 2, 2, 1, 5, 9, 3, 6, 3, 0, 0, 1, 8, 1, 3, 0, 8, 6, 3, 3, 9, 7, 2, 7, 5, 2, 7, 5, 9, 5, 6, 5, 1, 7, 9, 7
Offset: 0
Examples
i^(i^i) = 0.947158998072378380653475352018 + 0.320764449979308534660116845875 i.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Nicholas John Bizzell-Browning, LIE scales: Composing with scales of linear intervallic expansion, Ph. D. Thesis, Brunel Univ. (UK, 2024). See p. 144.
- Steven R. Finch, Errata and Addenda to Mathematical Constants, Jun 23 2012, Section 1.1
- D. Marques and J. Sondow, Schanuel's conjecture and algebraic powers z^w and w^z with z and w transcendental, East-West J. Math., 12 (2010), 75-84.
- Wikipedia, Schanuel's conjecture
Programs
-
Magma
C := ComplexField(100); Im(I^I^I); // G. C. Greubel, May 11 2019
-
Maple
c := sin((Pi/2)/exp(Pi/2)): Digits := 110: evalf(c, Digits)*10^105: ListTools:-Reverse(convert(floor(%), base, 10)); # Peter Luschny, Oct 23 2024
-
Mathematica
RealDigits[ Im[I^I^I], 10, 100] // First
-
PARI
imag(I^I^I) \\ Charles R Greathouse IV, May 15 2013
-
Sage
numerical_approx((i^i^i).imag(), digits=100) # G. C. Greubel, May 11 2019
Formula
Equals sin((Pi/2)/exp(Pi/2)). - Peter Luschny, Oct 23 2024
Comments