cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116191 Decimal expansion of imaginary part of i^(i^i), that is, Im(i^(i^i)).

Original entry on oeis.org

3, 2, 0, 7, 6, 4, 4, 4, 9, 9, 7, 9, 3, 0, 8, 5, 3, 4, 6, 6, 0, 1, 1, 6, 8, 4, 5, 8, 7, 4, 8, 6, 3, 1, 4, 0, 1, 0, 2, 3, 6, 7, 0, 2, 0, 6, 8, 1, 2, 7, 6, 7, 9, 9, 8, 2, 9, 6, 5, 7, 1, 6, 8, 7, 4, 0, 7, 5, 5, 2, 2, 2, 1, 5, 9, 3, 6, 3, 0, 0, 1, 8, 1, 3, 0, 8, 6, 3, 3, 9, 7, 2, 7, 5, 2, 7, 5, 9, 5, 6, 5, 1, 7, 9, 7
Offset: 0

Views

Author

Peter C. Heinig (algorithms(AT)gmx.de), Apr 15 2007

Keywords

Comments

If Schanuel's Conjecture is true, then i^i^i is transcendental (see Marques and Sondow 2010, p. 79).

Examples

			i^(i^i) = 0.947158998072378380653475352018 + 0.320764449979308534660116845875 i.
		

Crossrefs

Programs

  • Magma
    C := ComplexField(100);  Im(I^I^I); // G. C. Greubel, May 11 2019
    
  • Maple
    c := sin((Pi/2)/exp(Pi/2)): Digits := 110: evalf(c, Digits)*10^105:
    ListTools:-Reverse(convert(floor(%), base, 10));  # Peter Luschny, Oct 23 2024
  • Mathematica
    RealDigits[ Im[I^I^I], 10, 100] // First
  • PARI
    imag(I^I^I) \\ Charles R Greathouse IV, May 15 2013
    
  • Sage
    numerical_approx((i^i^i).imag(), digits=100) # G. C. Greubel, May 11 2019

Formula

Equals sin((Pi/2)/exp(Pi/2)). - Peter Luschny, Oct 23 2024