cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A116168 Numbers k such that k concatenated with k+1 gives the product of two numbers which differ by 8.

Original entry on oeis.org

19, 32, 16284704, 35576083, 15764836187996024260119639732979, 19807200907254352332962649366152, 20298517078413563250826300137112, 30190765850423053042937262322867, 30796637697589506772859224996627
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

Also numbers k such that k concatenated with k+8 gives the product of two numbers which differ by 6.

Examples

			35576083//35576084 = 59645686 * 59645694, where // denotes concatenation.
35576083//35576091 = 59645687 * 59645693.
		

Crossrefs

Extensions

Edited by N. J. A. Sloane, Apr 15 2007

A116207 Numbers k such that k concatenated with k+7 gives the product of two numbers which differ by 5.

Original entry on oeis.org

493, 607, 629, 757, 17927, 33247, 93869, 19467217, 31223879, 72757727, 13454739732766891651472740499, 40093333713615672956030023507, 48089152118689474641229584727, 66424317743191484432891678269
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

From Robert Israel, Nov 27 2024: (Start)
If 10^d + 1 has a prime factor p such that 53 is not a square mod p, then there are no terms k where k + 7 has d digits.
For example, there are no terms where d == 2 (mod 4), since in that case 10^d + 1 is divisible by 101, and 53 is not a square mod 101. (End)

Examples

			72757727//72757734 = 85298138 * 85298143, where // denotes concatenation.
		

Crossrefs

Programs

  • Maple
    f:= proc(d) # terms where k+7 has d digits
        local S,x,R,k;
        S:= map(t -> rhs(op(t)), [msolve(x*(x+5) = 7, 10^d+1)]);
        R:= NULL:
        for x in S do
          k := (x*(x+5)-7)/(10^d+1);
          if ilog10(k+7) = d - 1 then R:= R,k fi
        od:
        op(sort([R]))
    end proc:
    map(f, [$1..31]); # Robert Israel, Nov 27 2024

A116339 k times k+6 gives the concatenation of two numbers m and m+7.

Original entry on oeis.org

378, 617, 708, 903, 8761, 45456, 54539, 693063, 8181812, 88235288, 327935224, 330669332, 363636365, 418318517, 428571430, 461538455, 538461540, 571428565, 581681478, 636363630, 669330663, 672064771, 691571588
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(d) local S,x;
      S:= map(rhs@op,[msolve((x+3)^2 = 16, 10^d+1)]);
    end proc:
    g:= proc(n,d) local m; m:= ((n+3)^2-16)/(10^d+1)+7; m >= 10^(d-1) and m < 10^d end proc:
    sort([seq](op(select(g,f(i),i)),i=2..13)); # Robert Israel, Jan 27 2024

A116194 Numbers k such that k concatenated with k+5 gives the product of two numbers which differ by 6.

Original entry on oeis.org

1, 2, 10, 47, 550, 802, 570035, 623387, 1327222, 4041011, 8252210, 164398539591831062, 173868055738777586, 339918283297349107, 353476744122425611, 846974882088186070, 868300386379144450
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			8252210//8252215 = 9084165 * 9084171, where // denotes
concatenation.
		

Crossrefs

A116209 Numbers k such that k concatenated with k+7 gives the product of two numbers which differ by 7.

Original entry on oeis.org

1, 13, 41, 653, 2287, 2723, 5491, 23240971, 26823191, 60249661, 1841968537, 2009317771, 3044234903, 3258336353, 8166731261, 9481619237, 1281071245505271100098621541, 1551605670846640136726379653
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Crossrefs

Showing 1-5 of 5 results.