cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116217 Decimal expansion of constant Sum_{i,j,k=1..inf} 1/2^(i*j*k).

Original entry on oeis.org

2, 3, 2, 4, 7, 8, 4, 7, 7, 2, 8, 4, 0, 4, 7, 9, 0, 6, 1, 2, 3, 5, 2, 1, 7, 6, 8, 2, 8, 6, 1, 3, 9, 3, 0, 4, 6, 0, 2, 0, 9, 5, 1, 3, 4, 5, 2, 2, 5, 4, 7, 6, 0, 5, 3, 6, 0, 1, 4, 6, 9, 4, 6, 4, 4, 4, 1, 9, 2, 2, 0, 2, 0, 0, 4, 6, 3, 9, 7, 7, 0, 3, 1, 7, 3, 6, 9, 8, 8, 4, 0, 1, 5, 1, 2, 7, 7, 2, 8, 2, 6, 8, 8, 3, 1
Offset: 1

Views

Author

Alexander Adamchuk, Apr 09 2007

Keywords

Comments

This constant is a sum of triple series Sum[Sum[Sum[1/2^(i*j*k),{i,1,Infinity}],{j,1,Infinity}],{k,1,Infinity}] = 2.3247847... It is similar to Erdos-Borwein constant Sum[Sum[1/2^(i*j),{i,1,Infinity}],{j,1,Infinity}] = Sum[1/(2^k-1),{k,1,Infinity}] = 1.60669515...

Examples

			2.32478477284047906123521768286139304602095134522547605...
		

Crossrefs

Cf. A065442 = Decimal expansion of Erdos-Borwein constant Sum_{k=1..inf} 1/(2^k-1).

Programs

  • Mathematica
    digits = 105; Clear[s]; s[n_] := s[n] = 2*NSum[1/(2^(j*k) - 1), {j, 1, n}, {k, 1, j-1}, WorkingPrecision -> digits+10, NSumTerms -> 100] + NSum[1/(2^j^2 - 1), {j, 1, n}, WorkingPrecision -> digits+10, NSumTerms -> 100] // RealDigits[#, 10, digits]& // First; s[n=100]; While[s[n] != s[n-100], n = n+100]; s[n] (* Jean-François Alcover, Feb 13 2013 *)
  • PARI
    /* Using sum(n=1..infinity, A007425(n)/2^n )  */
    lambert2ser(L)=
    {
        local(n, t);
        n = length(L);
        t = sum(k=1, length(L), O('x^(n+1))+L[k]*'x^k/(1-'x^k) );
        t = Vec(t);
        return( t );
    }
    N=1000; v=vector(N,n,1); /* roughly 1000 bits precision */
    t=lambert2ser(lambert2ser(v)); /* ==[1, 3, 3, 6, 3, 9,...] == A007425 */
    default(realprecision,floor(N/3.4)); /* factor approx. log(10)/log(2) */
    sum(n=1,#v,1.0*t[n]/2^n)
    /* == 2.324784772840479061235217682861... */

Formula

Equals Sum_{n=1..infinity} A007425(n)/2^n . - R. J. Mathar, Jan 23 2008
From Amiram Eldar, Aug 10 2020: (Start)
Equals Sum{k>=1} d(k)/(2^k - 1), where d(k) is the number of divisors of k (A000005).
Equals Sum_{i,j=1..oo} 1/(2^(i*j) - 1). (End)

Extensions

More terms from R. J. Mathar, Jan 23 2008
More terms from Jean-François Alcover, Feb 13 2013