cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A116219 If X_1,...,X_n is a partition of a 3n-set X into 3-blocks then a(n) is equal to the number of permutations f of X such that f(X_i) <> X_i, (i=1,...,n).

Original entry on oeis.org

0, 684, 350352, 470444112, 1293433432704, 6355554535465920, 50823027472983319296, 618002474327361540442368, 10855431334634213344062394368, 264600531449039456516679858441216, 8665832467934840277899318819803484160, 371368757645100314808527266212241861300224
Offset: 1

Views

Author

Milan Janjic, Apr 09 2007

Keywords

Crossrefs

Programs

  • GAP
    List([1..20], n-> Sum([0..n], j-> (-6)^j*Binomial(n,j)* Factorial(3*n-3*j))); # G. C. Greubel, May 11 2019
  • Magma
    [(&+[(-6)^j*Binomial(n, j)*Factorial(3*n-3*j): j in [0..n]]): n in [1..20]]; // G. C. Greubel, May 11 2019
    
  • Maple
    a:=n->sum((-6)^i*binomial(n,i)*(3*n-3*i)!,i=0..n).
  • Mathematica
    Table[Sum[(-6)^i*Binomial[n, i]*(3*n - 3*i)!, {i, 0, n}], {n, 1, 20}] (* G. C. Greubel, May 11 2019 *)
  • PARI
    {a(n) = sum(j=0,n, (-6)^j*binomial(n,j)*(3*(n-j))!)}; \\ G. C. Greubel, May 11 2019
    
  • Sage
    [sum((-6)^j*binomial(n,j)*factorial(3*n-3*j) for j in (0..n)) for n in (1..20)] # G. C. Greubel, May 11 2019
    

Formula

a(n) = Sum_{j=0..n} (-6)^j*binomial(n,j)*(3*n-3*j)!.

A116221 If X_1,...,X_n is a partition of a 5n-set X into 5-blocks then a(n) is equal to the number of permutations f of X such that f(X_i) <> X_i, (i=1,...,n).

Original entry on oeis.org

0, 3614400, 1306371456000, 2432274637386240000, 15509750490368582860800000, 265241692266421512138485760000000, 10332925158674345473855915900600320000000, 815905363532798455769292988741440720076800000000, 119621339682330952236606797649198078512534126592000000000
Offset: 1

Views

Author

Milan Janjic, Apr 09 2007

Keywords

Crossrefs

Programs

  • GAP
    List([1..20], n-> Sum([0..n], j-> (-120)^j*Binomial(n,j)* Factorial(5*n-5*j))); # G. C. Greubel, May 11 2019
  • Magma
    [(&+[(-120)^j*Binomial(n, j)*Factorial(5*n-5*j): j in [0..n]]): n in [1..20]]; // G. C. Greubel, May 11 2019
    
  • Maple
    a:=n->sum((-120)^i*binomial(n,i)*(5*n-5*i)!,i=0..n).
  • Mathematica
    Table[Sum[(-5!)^j*Binomial[n, j]*(5*n-5*j)!, {j,0,n}], {n,1,20}] (* G. C. Greubel, May 11 2019 *)
  • PARI
    {a(n) = sum(j=0,n, (-120)^j*binomial(n,j)*(5*(n-j))!)}; \\ G. C. Greubel, May 11 2019
    
  • Sage
    [sum((-120)^j*binomial(n,j)*factorial(5*n-5*j) for j in (0..n)) for n in (1..20)] # G. C. Greubel, May 11 2019
    

Formula

a(n) = Sum_{j=0..n} (-120)^j*binomial(n,j)*(5*n-5*k)!.
Showing 1-2 of 2 results.