cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A116285 Numbers k such that k * (k+1) is the concatenation of a number m with itself.

Original entry on oeis.org

363, 637, 714, 923, 8905, 81818, 336633, 663367, 7272727, 76470589, 333666333, 405436668, 428571429, 447710185, 454545454, 473684211, 526315789, 545454546, 552289815, 571428571, 594563332, 666333667, 692307693, 711446449, 762237762, 834008097, 859982123, 879120879, 902255640, 974025975, 980861244
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

From Robert Israel, Apr 08 2025: (Start)
Numbers k such that k * (k + 1) = (10^d + 1) * m for some d and m where m has d digits.
Includes (10^(3*d)-1)/3 + (10^d-1)*10^d/3 and 2*(10^(3*d)-1)/3 - (10^d-1)*10^d/3 + 1 for all d >= 1. (End)

Crossrefs

Programs

  • Maple
    q:= proc(d,m) local R,t,a,b,x,q;
       t:= 10^d+1;
       R:= NULL;
       for a in numtheory:-divisors(t) do
         b:= t/a;
         if igcd(a,b) > 1 then next fi;
         for x from chrem([0,-m],[a,b]) by t do
           q:= x*(x+m)/t;
           if q >= 10^d then break fi;
           if q >= 10^(d-1) then R:= R, x fi;
       od od;
       sort(convert({R},list));
    end proc:
    seq(op(q(d,1)),d=1..10); # Robert Israel, Apr 08 2025

Formula

A161356(n) = a(n)*(a(n)+1). - Michael S. Branicky, Jul 11 2025

Extensions

More terms from Robert Israel, Apr 08 2025

A116265 n times n+1 gives the concatenation of two numbers m and m-3.

Original entry on oeis.org

96013, 3812029082958589067221817215314, 6187970917041410932778182784686, 3189731673290266386838927279556315882
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			96013 * 96014 = 92185//92182, where // denotes concatenation.
		

Crossrefs

A116273 Numbers k such that k*(k+2) gives the concatenation of two numbers m and m-2.

Original entry on oeis.org

90, 9078, 9900, 733673, 999000, 88225294, 99990000, 8900869207, 9296908811, 9604060396, 9999900000, 326666333266, 673333666733, 700730927007, 972603739726, 999999000000, 34519562953736, 39737862788837
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			90 is a member since 90*92 = 8280 = 82 80.
9078 is a member since 9078*9080 = 82428240 = 8242 8240.
		

Crossrefs

A116141 Numbers k such that k concatenated with k-2 gives the product of two numbers which differ by 1.

Original entry on oeis.org

4, 5303944, 6677714, 2070936216988528558, 2969428172738875624, 6685545813563350444, 8013829604553736451395958429212, 9724110515510343256451213152382
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			6677714//6677712 = 8171728 * 8171729, where // denotes
concatenation.
		

Crossrefs

Showing 1-4 of 4 results.