cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A116286 Numbers k such that k*(k+2) gives the concatenation of a number m with itself.

Original entry on oeis.org

9, 99, 427, 572, 726, 845, 999, 7809, 9999, 36364, 63635, 99999, 326733, 673266, 999999, 4545453, 5454546, 9999999, 47058822, 52941177, 99999999, 331983806, 332667333, 384615385, 422892897, 475524476, 524475523, 577107102, 615384614, 667332666, 668016193, 719964245, 758241757, 804511279
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

From Robert Israel, Apr 08 2025: (Start)
Numbers k such that k * (k + 2) = (10^d + 1) * m for some d and m where m has d digits.
Contains 10^d - 1 for all d >= 1. (End)

Crossrefs

Programs

  • Maple
    q:= proc(d,m) local R,t,a,b,x,q;
       t:= 10^d+1;
       R:= NULL;
       for a in numtheory:-divisors(t) do
         b:= t/a;
         if igcd(a,b) > 1 then next fi;
         for x from chrem([0,-m],[a,b]) by t do
           q:= x*(x+m)/t;
           if q >= 10^d then break fi;
           if q >= 10^(d-1) then R:= R, x fi;
       od od;
       sort(convert({R},list));
    end proc:
    A:=[seq(op(q(d,2)),d=1..10)]; # Robert Israel, Apr 08 2025

Extensions

More terms from Robert Israel, Apr 08 2025

A116294 Numbers k such that k*(k+1) gives the concatenation of two numbers m and m+1.

Original entry on oeis.org

3, 7, 78, 80919, 91809, 326510, 475025, 524975, 673490, 4323777, 4767132, 5232868, 5676223, 4083911141, 4975000250, 5024999750, 5916088859, 9503960496, 9604950396, 4186904462792, 4313465946775, 5686534053225, 5813095537208, 7504715871407, 7631277355390
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			80919 * (80919 + 1) = 6547965480, the concatenation of 65479 and 65479 + 1.
		

Crossrefs

Programs

  • Mathematica
    Union @@ ((x /. List@ ToRules@ Reduce[x (x+1) == 10^# y +y+1 && x>0 && 10^(#-1) <= y+1 < 10^#, {x,y}, Integers]) & /@ Range[13] /. x->{}) (* Giovanni Resta, Jul 08 2018 *)

Extensions

More terms from Giovanni Resta, Jul 08 2018

A116154 Numbers k such that k concatenated with itself gives the product of two numbers which differ by 1.

Original entry on oeis.org

132, 406, 510, 852, 7930, 66942, 113322, 440056, 5289256, 58477510, 111333222, 164378892, 183673470, 200444410, 206611570, 224376732, 277008310, 297520662, 305024040, 326530612, 353505556, 444000556, 479289942
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Crossrefs

A116272 n times n+1 gives the concatenation of two numbers m and m-2.

Original entry on oeis.org

6, 7282818, 8171728, 4550754022124826467, 5449245977875173533, 8176518705147900806, 8951999555715882882349355522889, 9861090464806791973258446431980
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			8171728 * 8171729 = 6677714//6677712, where // denotes
concatenation.
		

Crossrefs

A161356 Pronic numbers A002378 (AA) that can be divided into two equal strings (A).

Original entry on oeis.org

132132, 406406, 510510, 852852, 79307930, 6694266942, 113322113322, 440056440056, 52892565289256, 5847751058477510, 111333222111333222, 164378892164378892, 183673470183673470, 200444410200444410, 206611570206611570, 224376732224376732, 277008310277008310, 297520662297520662
Offset: 1

Views

Author

Claudio Meller, Jun 07 2009

Keywords

Examples

			132132 = 363 x 364 and can be divided into two equal strings (132), so it is a term.
406406 = 637 x 638, 510510 = 714 x 715, 852852 = 923 x 924, 79307930 = 8905 x 8906 are terms.
		

Crossrefs

Cf. A116285.

Formula

a(n) = A116285(n)*(A116285(n)+1). - Michael S. Branicky, Jul 11 2025

Extensions

a(6)-a(14) from Donovan Johnson, Jun 15 2009
a(15)-a(18) from Michael S. Branicky, Jul 11 2025 using A116285
Showing 1-5 of 5 results.