cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A116163 Numbers k such that k concatenated with k+1 gives the product of two numbers which differ by 1.

Original entry on oeis.org

1, 5, 61, 65479, 84289, 106609, 225649, 275599, 453589, 1869505, 2272555, 2738291, 3221951, 1667833021, 2475062749, 2525062249, 3500010739, 9032526511, 9225507211, 1753016898055, 1860598847399, 3233666953849, 3379207972471, 5632076031055, 5823639407489
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

Also numbers k such that k concatenated with k-1 gives the product of two numbers which differ by 3.

Examples

			1 is a member since 12 = 3*4; also 10 = 2*5.
5 is a member since 56 = 7*8; also 54 = 6*9.
		

Crossrefs

Programs

  • Mathematica
    Union @@ ((y /. List@ ToRules@ Reduce[x (x+1) == 10^# y +y+1 && x>0 && 10^(#-1) <= y+1 < 10^#, {x,y}, Integers]) & /@ Range[13] /. y->{}) (* Giovanni Resta, Jul 08 2018 *)

Extensions

Edited by N. J. A. Sloane, Apr 15 2007, Jun 27 2009
More terms from Giovanni Resta, Jul 08 2018

A116285 Numbers k such that k * (k+1) is the concatenation of a number m with itself.

Original entry on oeis.org

363, 637, 714, 923, 8905, 81818, 336633, 663367, 7272727, 76470589, 333666333, 405436668, 428571429, 447710185, 454545454, 473684211, 526315789, 545454546, 552289815, 571428571, 594563332, 666333667, 692307693, 711446449, 762237762, 834008097, 859982123, 879120879, 902255640, 974025975, 980861244
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

From Robert Israel, Apr 08 2025: (Start)
Numbers k such that k * (k + 1) = (10^d + 1) * m for some d and m where m has d digits.
Includes (10^(3*d)-1)/3 + (10^d-1)*10^d/3 and 2*(10^(3*d)-1)/3 - (10^d-1)*10^d/3 + 1 for all d >= 1. (End)

Crossrefs

Programs

  • Maple
    q:= proc(d,m) local R,t,a,b,x,q;
       t:= 10^d+1;
       R:= NULL;
       for a in numtheory:-divisors(t) do
         b:= t/a;
         if igcd(a,b) > 1 then next fi;
         for x from chrem([0,-m],[a,b]) by t do
           q:= x*(x+m)/t;
           if q >= 10^d then break fi;
           if q >= 10^(d-1) then R:= R, x fi;
       od od;
       sort(convert({R},list));
    end proc:
    seq(op(q(d,1)),d=1..10); # Robert Israel, Apr 08 2025

Formula

A161356(n) = a(n)*(a(n)+1). - Michael S. Branicky, Jul 11 2025

Extensions

More terms from Robert Israel, Apr 08 2025

A116295 Numbers k such that k*(k+2) gives the concatenation of two numbers m and m+1.

Original entry on oeis.org

8873, 9010, 83352841, 99000100, 329767122287, 670232877712, 738226276372, 933006600340, 999000001000, 3779410975143114, 3872816717528066, 4250291784692549, 4278630943941866, 4372036686326818, 4749511753491301
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

From Robert Israel, Jun 06 2018: (Start)
Numbers k such that 10^m+1 | (k+1)^2-2 where (k+1)^2 has 2*m digits.
Includes 10^i - 10^(3*i) + 10^(4*i) for all i >= 1. (End)

Examples

			99000100 * 99000102 = 98010199//98010200, where // denotes concatenation.
		

Crossrefs

Programs

  • Maple
    Res:= NULL:
    for d from 1 to 40 do
      Res:= Res, op(sort(select(t -> t^2 >= 10^(2*d-1),map(t -> rhs(op(t))-1,[msolve(x^2=2, 10^d+1)]))))
    od:
    Res; # Robert Israel, Jun 06 2018

A116301 n times n+1 gives the concatenation of two numbers m and m+2.

Original entry on oeis.org

768, 859, 911, 3286, 6714, 45453, 54547, 990101, 8181820, 70588234, 343130555, 362637364, 363636362, 420053632, 421052633, 497975710, 502024290, 578947367, 579946368, 636363638, 637362636, 656869445, 706766919
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Crossrefs

Programs

  • Maple
    As:= {}:
    for m from 2 to 20 do
       acands:= map(t -> rhs(op(t)), [msolve(a*(a+1)=2, 10^m+1)]);
       bcands:= map(t -> t*(t+1) mod 10^m, acands);
       good:= select(t -> bcands[t]>=10^(m-1), [$1..nops(acands)]);
       As:= As union convert(acands[good],set);
    od:
    sort(convert(As,list)); # Robert Israel, Aug 20 2019
Showing 1-4 of 4 results.