cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A115426 Numbers k such that the concatenation of k with k+2 gives a square.

Original entry on oeis.org

7874, 8119, 69476962, 98010199, 108746354942, 449212110367, 544978035127, 870501316279, 998001001999, 1428394731903223, 1499870932756487, 1806498025502498, 1830668275445687, 1911470478658759, 2255786189655202
Offset: 1

Views

Author

Giovanni Resta, Jan 24 2006

Keywords

Comments

Numbers k such that k concatenated with k+1 gives the product of two numbers which differ by 2.
Numbers k such that k concatenated with k-2 gives the product of two numbers which differ by 4.
Numbers k such that k concatenated with k-7 gives the product of two numbers which differ by 6.

Examples

			8119//8121 = 9011^2, where // denotes concatenation.
98010199//98010200 = 99000100 * 99000102.
98010199//98010197 = 99000099 * 99000103.
		

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from sympy import sqrt_mod
    def A115426_gen(): # generator of terms
        for j in count(0):
            b = 10**j
            a = b*10+1
            for k in sorted(sqrt_mod(2,a,all_roots=True)):
                if a*(b-2) <= k**2-2 < a*(a-3):
                    yield (k**2-2)//a
    A115426_list = list(islice(A115426_gen(),40)) # Chai Wah Wu, Feb 20 2024

Extensions

Edited by N. J. A. Sloane, Apr 13 2007

A116286 Numbers k such that k*(k+2) gives the concatenation of a number m with itself.

Original entry on oeis.org

9, 99, 427, 572, 726, 845, 999, 7809, 9999, 36364, 63635, 99999, 326733, 673266, 999999, 4545453, 5454546, 9999999, 47058822, 52941177, 99999999, 331983806, 332667333, 384615385, 422892897, 475524476, 524475523, 577107102, 615384614, 667332666, 668016193, 719964245, 758241757, 804511279
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

From Robert Israel, Apr 08 2025: (Start)
Numbers k such that k * (k + 2) = (10^d + 1) * m for some d and m where m has d digits.
Contains 10^d - 1 for all d >= 1. (End)

Crossrefs

Programs

  • Maple
    q:= proc(d,m) local R,t,a,b,x,q;
       t:= 10^d+1;
       R:= NULL;
       for a in numtheory:-divisors(t) do
         b:= t/a;
         if igcd(a,b) > 1 then next fi;
         for x from chrem([0,-m],[a,b]) by t do
           q:= x*(x+m)/t;
           if q >= 10^d then break fi;
           if q >= 10^(d-1) then R:= R, x fi;
       od od;
       sort(convert({R},list));
    end proc:
    A:=[seq(op(q(d,2)),d=1..10)]; # Robert Israel, Apr 08 2025

Extensions

More terms from Robert Israel, Apr 08 2025

A116294 Numbers k such that k*(k+1) gives the concatenation of two numbers m and m+1.

Original entry on oeis.org

3, 7, 78, 80919, 91809, 326510, 475025, 524975, 673490, 4323777, 4767132, 5232868, 5676223, 4083911141, 4975000250, 5024999750, 5916088859, 9503960496, 9604950396, 4186904462792, 4313465946775, 5686534053225, 5813095537208, 7504715871407, 7631277355390
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			80919 * (80919 + 1) = 6547965480, the concatenation of 65479 and 65479 + 1.
		

Crossrefs

Programs

  • Mathematica
    Union @@ ((x /. List@ ToRules@ Reduce[x (x+1) == 10^# y +y+1 && x>0 && 10^(#-1) <= y+1 < 10^#, {x,y}, Integers]) & /@ Range[13] /. x->{}) (* Giovanni Resta, Jul 08 2018 *)

Extensions

More terms from Giovanni Resta, Jul 08 2018

A116296 Numbers k such that k*(k+3) gives the concatenation of two numbers m and m+1.

Original entry on oeis.org

82, 77394228, 89158934, 36623663376237623663376336, 37633762366336633762366236, 62366237633663366237633762, 63376336623762376336623662, 86194223018927804587702129
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			89158934 * 89158937 = 79493157//79493158, where // denotes concatenation.
		

Crossrefs

A116308 Numbers k such that k*(k+2) is the concatenation of two numbers m and m+3.

Original entry on oeis.org

452, 547, 690, 855, 4381, 5618, 72729, 346532, 653467, 9090907, 94117645, 334665332, 336032386, 378253327, 390977441, 439928490, 483516485, 516483514, 560071509, 609022558, 621746672, 663967613, 665334667
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Crossrefs

Showing 1-5 of 5 results.