cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A116295 Numbers k such that k*(k+2) gives the concatenation of two numbers m and m+1.

Original entry on oeis.org

8873, 9010, 83352841, 99000100, 329767122287, 670232877712, 738226276372, 933006600340, 999000001000, 3779410975143114, 3872816717528066, 4250291784692549, 4278630943941866, 4372036686326818, 4749511753491301
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

From Robert Israel, Jun 06 2018: (Start)
Numbers k such that 10^m+1 | (k+1)^2-2 where (k+1)^2 has 2*m digits.
Includes 10^i - 10^(3*i) + 10^(4*i) for all i >= 1. (End)

Examples

			99000100 * 99000102 = 98010199//98010200, where // denotes concatenation.
		

Crossrefs

Programs

  • Maple
    Res:= NULL:
    for d from 1 to 40 do
      Res:= Res, op(sort(select(t -> t^2 >= 10^(2*d-1),map(t -> rhs(op(t))-1,[msolve(x^2=2, 10^d+1)]))))
    od:
    Res; # Robert Israel, Jun 06 2018

A116309 Numbers k such that k*(k+3) gives the concatenation of two numbers m and m+3.

Original entry on oeis.org

40, 58, 32262232, 67737766, 79321056, 3341093417798787499093, 3861488851737861033961, 4747922651210186579787, 5252077348789813420211, 6138511148262138966037, 6658906582201212500905, 7232275368591793618231
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			79321056 * 79321059 = 62918301//62918304, where // denotes concatenation.
		

Crossrefs

Programs

  • Maple
    As:= {}:
    for m from 2 to 62 do
       acands:= map(t -> rhs(op(t)), [msolve(a*(a+3)=3, 10^m+1)]);
       bcands:= map(t -> t*(t+3) mod 10^m, acands);
       good:= select(t -> bcands[t]>=10^(m-1), [$1..nops(acands)]);
       As:= As union convert(acands[good],set);
    od:
    sort(convert(As,list)); # Robert Israel, Aug 20 2019

A116315 Numbers k such that k*(k+2) gives the concatenation of two numbers m and m+4.

Original entry on oeis.org

3, 6, 44, 55, 38162, 61837, 83617, 346979, 653020, 950050, 8647554, 9534264, 8167822282, 9007920991, 9209900791, 9950000500, 4737445289220, 4990568257186, 5009431742813, 5262554710779, 8373808925584
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Crossrefs

A116177 Numbers k such that k concatenated with k+3 gives the product of two numbers which differ by 2.

Original entry on oeis.org

205, 300, 477, 732, 1920, 3157, 52896, 120085, 427020, 8264460, 88581312, 112000885, 112917765, 143075580, 152863360, 193537077, 233788192, 266755221, 313680096, 370908477, 386568925, 440852992, 442670220
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Crossrefs

A116307 Numbers k such that k*(k+1) gives the concatenation of two numbers m and m+3.

Original entry on oeis.org

83, 77394229, 89158935, 36623663376237623663376337, 37633762366336633762366237, 62366237633663366237633763, 63376336623762376336623663, 86194223018927804587702130
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			89158935 * 89158936 = 79493157//79493160, where // denotes concatenation.
		

Crossrefs

Showing 1-5 of 5 results.