cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A116099 Numbers k such that k concatenated with k-9 gives the product of two numbers which differ by 7.

Original entry on oeis.org

69, 59898667, 79493157, 13412927190959690154913903, 14163000698458955079906403, 38895475965785687555173929, 40165600438484442828161229, 74294440818366638194239027
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

Also numbers k such that k concatenated with k-3 gives the product of two numbers which differ by 5.
Also numbers k such that k concatenated with k+1 gives the product of two numbers which differ by 3.
Also numbers k such that k concatenated with k+3 gives the product of two numbers which differ by 1.

Examples

			79493157//79493154 = 89158933 * 89158938, where // denotes concatenation.
79493157//79493158 = 89158934 * 89158937.
79493157//79493160 = 89158935 * 89158936.
79493157//79493148 = 89158932 * 89158939.
		

Crossrefs

Extensions

Edited by N. J. A. Sloane, Apr 12 2007

A116287 Numbers k such that k*(k+3) gives the concatenation of a number m with itself.

Original entry on oeis.org

8, 98, 767, 858, 910, 998, 3285, 6713, 9998, 45452, 54546, 99998, 990100, 999998, 8181819, 9999998, 70588233, 99999998, 343130554, 362637363, 363636361, 420053631, 421052632, 497975709, 502024289, 578947366, 579946367, 636363637, 637362635, 656869444, 706766918, 713286714, 714285712, 783689995
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

From Robert Israel, Apr 08 2025: (Start)
Numbers k such that k * (k + 3) = (10^d + 1) * m for some d and m where m has d digits.
Contains 10^d-2 for all d >= 1. (End)

Crossrefs

Programs

  • Maple
    q:= proc(d,m) local R,t,a,b,x,q;
       t:= 10^d+1;
       R:= NULL;
       for a in numtheory:-divisors(t) do
         b:= t/a;
         if igcd(a,b) > 1 then next fi;
         for x from chrem([0,-m],[a,b]) by t do
           q:= x*(x+m)/t;
           if q >= 10^d then break fi;
           if q >= 10^(d-1) then R:= R, x fi;
       od od;
       sort(convert({R},list));
    end proc:
    seq(op(q(d,3)),d=1..10); # Robert Israel, Apr 08 2025

Extensions

More terms from Robert Israel, Apr 08 2025

A116295 Numbers k such that k*(k+2) gives the concatenation of two numbers m and m+1.

Original entry on oeis.org

8873, 9010, 83352841, 99000100, 329767122287, 670232877712, 738226276372, 933006600340, 999000001000, 3779410975143114, 3872816717528066, 4250291784692549, 4278630943941866, 4372036686326818, 4749511753491301
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

From Robert Israel, Jun 06 2018: (Start)
Numbers k such that 10^m+1 | (k+1)^2-2 where (k+1)^2 has 2*m digits.
Includes 10^i - 10^(3*i) + 10^(4*i) for all i >= 1. (End)

Examples

			99000100 * 99000102 = 98010199//98010200, where // denotes concatenation.
		

Crossrefs

Programs

  • Maple
    Res:= NULL:
    for d from 1 to 40 do
      Res:= Res, op(sort(select(t -> t^2 >= 10^(2*d-1),map(t -> rhs(op(t))-1,[msolve(x^2=2, 10^d+1)]))))
    od:
    Res; # Robert Israel, Jun 06 2018

A116297 Numbers k such that k*(k+4) gives the concatenation of two numbers m and m+1.

Original entry on oeis.org

2, 5, 43, 54, 38161, 61836, 83616, 346978, 653019, 950049, 8647553, 9534263, 8167822281, 9007920990, 9209900790, 9950000499, 4737445289219, 4990568257185, 5009431742812, 5262554710778, 8373808925583
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Crossrefs

A116302 Numbers k such that k*(k+3) gives the concatenation of two numbers m and m+2.

Original entry on oeis.org

27, 71, 79822844, 69852478553064869297984899963806, 77473062193002372448027740546438, 77747359197583788609974143907618, 84341826458653210947638195982114, 85367942837521291760016984490250
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			79822844 * 79822847 = 63716866//63716868, where // denotes concatenation.
		

Crossrefs

Showing 1-5 of 5 results.