cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A116130 Numbers k such that k concatenated with k-4 gives the product of two numbers which differ by 5.

Original entry on oeis.org

8, 98, 590, 738, 830, 998, 1080, 4508, 9998, 20660, 29754, 99998, 980300, 999998, 6694218, 9999998, 49826988, 99999998, 117738578, 131505858, 132231404, 176445054, 177285320, 247979808, 252028388, 335180054, 336337790
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

Also numbers k such that k concatenated with itself gives the product of two numbers which differ by 3.

Examples

			7531357568//7531357564 = 8678339452 * 8678339457, where // denotes concatenation.
		

Crossrefs

Extensions

Edited by N. J. A. Sloane, Apr 13 2007

A116286 Numbers k such that k*(k+2) gives the concatenation of a number m with itself.

Original entry on oeis.org

9, 99, 427, 572, 726, 845, 999, 7809, 9999, 36364, 63635, 99999, 326733, 673266, 999999, 4545453, 5454546, 9999999, 47058822, 52941177, 99999999, 331983806, 332667333, 384615385, 422892897, 475524476, 524475523, 577107102, 615384614, 667332666, 668016193, 719964245, 758241757, 804511279
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

From Robert Israel, Apr 08 2025: (Start)
Numbers k such that k * (k + 2) = (10^d + 1) * m for some d and m where m has d digits.
Contains 10^d - 1 for all d >= 1. (End)

Crossrefs

Programs

  • Maple
    q:= proc(d,m) local R,t,a,b,x,q;
       t:= 10^d+1;
       R:= NULL;
       for a in numtheory:-divisors(t) do
         b:= t/a;
         if igcd(a,b) > 1 then next fi;
         for x from chrem([0,-m],[a,b]) by t do
           q:= x*(x+m)/t;
           if q >= 10^d then break fi;
           if q >= 10^(d-1) then R:= R, x fi;
       od od;
       sort(convert({R},list));
    end proc:
    A:=[seq(op(q(d,2)),d=1..10)]; # Robert Israel, Apr 08 2025

Extensions

More terms from Robert Israel, Apr 08 2025

A116288 Numbers k such that k*(k+4) gives the concatenation of a number m with itself.

Original entry on oeis.org

7, 97, 451, 546, 689, 854, 997, 4380, 5617, 9997, 72728, 99997, 346531, 653466, 999997, 9090906, 9999997, 94117644, 99999997, 334665331, 336032385, 378253326, 390977440, 439928489, 483516484, 516483513, 560071508
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

Contains 10^m - 3 hence the sequence is infinite. - David A. Corneth, Feb 20 2024

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from sympy import sqrt_mod
    def A116288_gen(): # generator of terms
        for j in count(0):
            b = 10**j
            a = b*10+1
            for k in sorted(sqrt_mod(4,a,all_roots=True)):
                if a*b <= k**2-4 < a*(a-1):
                    yield k-2
    A116288_list = list(islice(A116288_gen(),40)) # Chai Wah Wu, Feb 20 2024

A116280 n times n+3 gives the concatenation of two numbers m and m-1.

Original entry on oeis.org

6, 77, 80918, 91808, 326509, 475024, 524974, 673489, 4323776, 4767131, 5232867, 5676222, 4083911140, 4975000249, 5024999749, 5916088858, 9503960495, 9604950395, 4186904462791, 4313465946774, 5686534053224, 5813095537207
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Crossrefs

A116296 Numbers k such that k*(k+3) gives the concatenation of two numbers m and m+1.

Original entry on oeis.org

82, 77394228, 89158934, 36623663376237623663376336, 37633762366336633762366236, 62366237633663366237633762, 63376336623762376336623662, 86194223018927804587702129
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			89158934 * 89158937 = 79493157//79493158, where // denotes concatenation.
		

Crossrefs

Showing 1-5 of 5 results.