A102567
Numbers k such that the concatenation of k with itself is a biperiod square.
Original entry on oeis.org
13223140496, 20661157025, 29752066116, 40495867769, 52892561984, 66942148761, 82644628100, 183673469387755102041, 326530612244897959184, 510204081632653061225, 734693877551020408164
Offset: 1
C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 15 2005
13223140496 concatenated with 13223140496 is 1322314049613223140496 = 36363636364^2.
40495867769 is in the sequence because writing it twice gives the square number 4049586776940495867769 = 63636363637^2.
- Andrew Bridy, Robert J. Lemke Oliver, Arlo Shallit, and Jeffrey Shallit, The Generalized Nagell-Ljunggren Problem: Powers with Repetitive Representations, Experimental Math, 28 (2019), 428-439.
- R. Ondrejka, Problem 1130: Biperiod Squares, Journal of Recreational Mathematics, Vol. 14:4 (1981-82), 299. Solution by F. H. Kierstead, Jr., JRM, Vol. 15:4 (1982-83), 311-312.
- David W. Wilson, Table of n, a(n) for n = 1..1098
- Dr Barker, Can Numbers Like These Be Square?, YouTube video, 2023.
- Andrew Bridy, Robert J. Lemke Oliver, Arlo Shallit, and Jeffrey Shallit, The Generalized Nagell-Ljunggren Problem: Powers with Repetitive Representations, preprint arXiv:1707.03894 [math.NT], July 14 2017.
-
with(numtheory): Digits:=50:for d from 1 to 35 do tendp1:=10^d+1: tendp1fact:=ifactors(tendp1)[2]: n:=mul(piecewise(tendp1fact[i][2] mod 2=1,tendp1fact[i][1],1),i=1..nops(tendp1fact)):for i from ceil(sqrt((10^(d-1))/n)) to floor(sqrt((10^d-1)/n)) do printf("%d, ",n*i^2) od: od:
-
A102567L[n_] := Catenate@Table[Module[{fac = FactorInteger[10^k + 1], min}, If[Max@fac[[All, -1]] == 1, {}, min = Times @@ Cases[fac, {a_, A102567L%5B30%5D%20(*%20_JungHwan%20Min">?OddQ} :> a]; Table[min s^2, {s, Ceiling@Sqrt[10^(k - 1)/min], Floor@Sqrt[(10^k - 1)/min]}]]], {k, n}]; A102567L[30] (* _JungHwan Min, Dec 11 2016 *)
A102567Q = IntegerQ@Sqrt@FromDigits[Join[#, #] &@IntegerDigits[#]] & (* JungHwan Min, Dec 11 2016 *)
-
p = [3, 487, 56598313]; \\ A045616
b(n) = my(d = gcd(n, lift(Mod(10,n)^n)+1), s = 1); for(j=1, #p, my(e = znorder(Mod(10, p[j]))); if((e % 2 == 0) && (n % (e/2) == 0) && (n/(e/2) % 2 == 1), my(v = valuation(d, p[j])); d /= p[j]^v; s *= p[j]^((v+valuation(10^e-1, p[j]))\2))); my(f = factor(d)); for(i=1, #f~, s *= f[i,1]^((f[i,2]+1)\2)); s; \\ giving s such that 10^n + 1 = s^2*t where t is squarefree, considering only the three already-known terms of A045616
A102567_length_n(n) = my(t = (10^n+1)/b(n)^2, lowlim = 1+sqrtint(10^(n-1)\t), uplim = sqrtint((10^n-1)\t)); vector(uplim-lowlim+1, i, (lowlim-1+i)^2 * t) \\ terms of the form a^2*t such that 10^(n-1) <= a^2*t <= 10^n - 1
\\ Jianing Song, Nov 01 2024
-
from itertools import count, islice
from sympy import sqrt_mod
def A102567_gen(): # generator of terms
for j in count(0):
b = 10**j
a = b*10+1
for k in sorted(sqrt_mod(0,a,all_roots=True)):
if a*b <= k**2 < a*(a-1):
yield k**2//a
A102567_list = list(islice(A102567_gen(),10)) # Chai Wah Wu, Feb 19 2024
A115426
Numbers k such that the concatenation of k with k+2 gives a square.
Original entry on oeis.org
7874, 8119, 69476962, 98010199, 108746354942, 449212110367, 544978035127, 870501316279, 998001001999, 1428394731903223, 1499870932756487, 1806498025502498, 1830668275445687, 1911470478658759, 2255786189655202
Offset: 1
8119//8121 = 9011^2, where // denotes concatenation.
98010199//98010200 = 99000100 * 99000102.
98010199//98010197 = 99000099 * 99000103.
Cf.
A030465,
A102567,
A115427,
A115428,
A115429,
A115430,
A115431,
A115432,
A115433,
A115434,
A115435,
A115436,
A115437.
-
from itertools import count, islice
from sympy import sqrt_mod
def A115426_gen(): # generator of terms
for j in count(0):
b = 10**j
a = b*10+1
for k in sorted(sqrt_mod(2,a,all_roots=True)):
if a*(b-2) <= k**2-2 < a*(a-3):
yield (k**2-2)//a
A115426_list = list(islice(A115426_gen(),40)) # Chai Wah Wu, Feb 20 2024
A116112
Numbers k such that k concatenated with k-7 gives the product of two numbers which differ by 7.
Original entry on oeis.org
17, 35, 10408517, 45884051, 62918301, 1116290522645838319925, 1491109615209578451401, 2254276950187476704727, 2758431647767103545151, 3768131911733856383477, 4434103687048263321737, 5230580700713956424051
Offset: 1
62918301//62918300 = 79321055 * 79321060, where // denotes concatenation.
62918301//62918304 = 79321056 * 79321059.
62918301//62918306 = 79321057 * 79321058.
A116130
Numbers k such that k concatenated with k-4 gives the product of two numbers which differ by 5.
Original entry on oeis.org
8, 98, 590, 738, 830, 998, 1080, 4508, 9998, 20660, 29754, 99998, 980300, 999998, 6694218, 9999998, 49826988, 99999998, 117738578, 131505858, 132231404, 176445054, 177285320, 247979808, 252028388, 335180054, 336337790
Offset: 1
7531357568//7531357564 = 8678339452 * 8678339457, where // denotes concatenation.
A116170
Numbers k such that k concatenated with k+2 gives the product of two numbers which differ by 1.
Original entry on oeis.org
590, 738, 830, 1080, 4508, 20660, 29754, 980300, 6694218, 49826988, 117738578, 131505858, 132231404, 176445054, 177285320, 247979808, 252028388, 335180054, 336337790, 404958680, 406231130, 431477468, 499519478
Offset: 1
-
As:= {}:
for m from 2 to 20 do
acands:= map(t -> rhs(op(t)), [msolve(a*(a+1)=2, 10^m+1)]);
bcands:= map(t -> t*(t+1) mod 10^m, acands);
good:= select(t -> bcands[t]>=10^(m-1), [$1..nops(acands)]);
As:= As union convert(bcands[good], set);
od: map(t -> t-2, sort(convert(As, list))); # Robert Israel, Aug 20 2019
A116294
Numbers k such that k*(k+1) gives the concatenation of two numbers m and m+1.
Original entry on oeis.org
3, 7, 78, 80919, 91809, 326510, 475025, 524975, 673490, 4323777, 4767132, 5232868, 5676223, 4083911141, 4975000250, 5024999750, 5916088859, 9503960496, 9604950396, 4186904462792, 4313465946775, 5686534053225, 5813095537208, 7504715871407, 7631277355390
Offset: 1
80919 * (80919 + 1) = 6547965480, the concatenation of 65479 and 65479 + 1.
-
Union @@ ((x /. List@ ToRules@ Reduce[x (x+1) == 10^# y +y+1 && x>0 && 10^(#-1) <= y+1 < 10^#, {x,y}, Integers]) & /@ Range[13] /. x->{}) (* Giovanni Resta, Jul 08 2018 *)
A116154
Numbers k such that k concatenated with itself gives the product of two numbers which differ by 1.
Original entry on oeis.org
132, 406, 510, 852, 7930, 66942, 113322, 440056, 5289256, 58477510, 111333222, 164378892, 183673470, 200444410, 206611570, 224376732, 277008310, 297520662, 305024040, 326530612, 353505556, 444000556, 479289942
Offset: 1
Showing 1-7 of 7 results.
Comments