cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A102567 Numbers k such that the concatenation of k with itself is a biperiod square.

Original entry on oeis.org

13223140496, 20661157025, 29752066116, 40495867769, 52892561984, 66942148761, 82644628100, 183673469387755102041, 326530612244897959184, 510204081632653061225, 734693877551020408164
Offset: 1

Views

Author

C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 15 2005

Keywords

Comments

Also, numbers N associated with A106497.
Also, numbers k such that k concatenated with k-1 gives the product of two numbers which differ by 2. E.g., 13223140496//13223140495 = 36363636363 * 36363636365, where // denotes concatenation. - Giovanni Resta and Franklin T. Adams-Watters, Nov 13 2006
From Jianing Song, Nov 01 2024: (Start)
Numbers 10^(k-1) <= a <= 10^k - 1 such that a*(10^k + 1) is a square. Note that 10^k + 1 must be nonsquarefree, i.e., k is in A086982, otherwise a must be divisible by 10^k + 1, which is impossible.
Let v(p,m) be the p-adic valuation of m.
- If p is not in A045616, then v(p,10^k+1) = r > 0 if and only if v(p,gcd(n,10^k+1)) = r-1.
- If p is in A045616, let e be the multiplicative order of 10 modulo p, then v(p,10^k+1) > 0 if and only if e is even and k is an odd multiple of e/2, in which case v(p,10^k+1) = v(p,10^e-1) + v(p,k) = v(p,10^e-1) + v(p,gcd(k,10^k+1)).
This helps to find the terms. (End)

Examples

			13223140496 concatenated with 13223140496 is 1322314049613223140496 = 36363636364^2.
40495867769 is in the sequence because writing it twice gives the square number 4049586776940495867769 = 63636363637^2.
		

References

  • Andrew Bridy, Robert J. Lemke Oliver, Arlo Shallit, and Jeffrey Shallit, The Generalized Nagell-Ljunggren Problem: Powers with Repetitive Representations, Experimental Math, 28 (2019), 428-439.
  • R. Ondrejka, Problem 1130: Biperiod Squares, Journal of Recreational Mathematics, Vol. 14:4 (1981-82), 299. Solution by F. H. Kierstead, Jr., JRM, Vol. 15:4 (1982-83), 311-312.

Crossrefs

Programs

  • Maple
    with(numtheory): Digits:=50:for d from 1 to 35 do tendp1:=10^d+1: tendp1fact:=ifactors(tendp1)[2]: n:=mul(piecewise(tendp1fact[i][2] mod 2=1,tendp1fact[i][1],1),i=1..nops(tendp1fact)):for i from ceil(sqrt((10^(d-1))/n)) to floor(sqrt((10^d-1)/n)) do printf("%d, ",n*i^2) od: od:
  • Mathematica
    A102567L[n_] := Catenate@Table[Module[{fac = FactorInteger[10^k + 1], min}, If[Max@fac[[All, -1]] == 1, {}, min = Times @@ Cases[fac, {a_, A102567L%5B30%5D%20(*%20_JungHwan%20Min">?OddQ} :> a]; Table[min s^2, {s, Ceiling@Sqrt[10^(k - 1)/min], Floor@Sqrt[(10^k - 1)/min]}]]], {k, n}]; A102567L[30] (* _JungHwan Min, Dec 11 2016 *)
    A102567Q = IntegerQ@Sqrt@FromDigits[Join[#, #] &@IntegerDigits[#]] & (* JungHwan Min, Dec 11 2016 *)
  • PARI
    p = [3, 487, 56598313]; \\ A045616
    b(n) = my(d = gcd(n, lift(Mod(10,n)^n)+1), s = 1); for(j=1, #p, my(e = znorder(Mod(10, p[j]))); if((e % 2 == 0) && (n % (e/2) == 0) && (n/(e/2) % 2 == 1), my(v = valuation(d, p[j])); d /= p[j]^v; s *= p[j]^((v+valuation(10^e-1, p[j]))\2))); my(f = factor(d)); for(i=1, #f~, s *= f[i,1]^((f[i,2]+1)\2)); s; \\ giving s such that 10^n + 1 = s^2*t where t is squarefree, considering only the three already-known terms of A045616
    A102567_length_n(n) = my(t = (10^n+1)/b(n)^2, lowlim = 1+sqrtint(10^(n-1)\t), uplim = sqrtint((10^n-1)\t)); vector(uplim-lowlim+1, i, (lowlim-1+i)^2 * t) \\ terms of the form a^2*t such that 10^(n-1) <= a^2*t <= 10^n - 1
    \\ Jianing Song, Nov 01 2024
  • Python
    from itertools import count, islice
    from sympy import sqrt_mod
    def A102567_gen(): # generator of terms
        for j in count(0):
            b = 10**j
            a = b*10+1
            for k in sorted(sqrt_mod(0,a,all_roots=True)):
                if a*b <= k**2 < a*(a-1):
                    yield k**2//a
    A102567_list = list(islice(A102567_gen(),10)) # Chai Wah Wu, Feb 19 2024
    

Extensions

Entry revised by N. J. A. Sloane, Nov 14 2006 and also Nov 27 2006
Definition edited and reference added by William Rex Marshall, Nov 12 2010

A115426 Numbers k such that the concatenation of k with k+2 gives a square.

Original entry on oeis.org

7874, 8119, 69476962, 98010199, 108746354942, 449212110367, 544978035127, 870501316279, 998001001999, 1428394731903223, 1499870932756487, 1806498025502498, 1830668275445687, 1911470478658759, 2255786189655202
Offset: 1

Views

Author

Giovanni Resta, Jan 24 2006

Keywords

Comments

Numbers k such that k concatenated with k+1 gives the product of two numbers which differ by 2.
Numbers k such that k concatenated with k-2 gives the product of two numbers which differ by 4.
Numbers k such that k concatenated with k-7 gives the product of two numbers which differ by 6.

Examples

			8119//8121 = 9011^2, where // denotes concatenation.
98010199//98010200 = 99000100 * 99000102.
98010199//98010197 = 99000099 * 99000103.
		

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from sympy import sqrt_mod
    def A115426_gen(): # generator of terms
        for j in count(0):
            b = 10**j
            a = b*10+1
            for k in sorted(sqrt_mod(2,a,all_roots=True)):
                if a*(b-2) <= k**2-2 < a*(a-3):
                    yield (k**2-2)//a
    A115426_list = list(islice(A115426_gen(),40)) # Chai Wah Wu, Feb 20 2024

Extensions

Edited by N. J. A. Sloane, Apr 13 2007

A116112 Numbers k such that k concatenated with k-7 gives the product of two numbers which differ by 7.

Original entry on oeis.org

17, 35, 10408517, 45884051, 62918301, 1116290522645838319925, 1491109615209578451401, 2254276950187476704727, 2758431647767103545151, 3768131911733856383477, 4434103687048263321737, 5230580700713956424051
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

Also numbers k such that k concatenated with k-1 gives the product of two numbers which differ by 5.
Also numbers k such that k concatenated with k+3 gives the product of two numbers which differ by 3.
Also numbers k such that k concatenated with k+5 gives the product of two numbers which differ by 1.

Examples

			62918301//62918300 = 79321055 * 79321060, where // denotes concatenation.
62918301//62918304 = 79321056 * 79321059.
62918301//62918306 = 79321057 * 79321058.
		

Crossrefs

Extensions

Edited by N. J. A. Sloane, Apr 15 2007

A116130 Numbers k such that k concatenated with k-4 gives the product of two numbers which differ by 5.

Original entry on oeis.org

8, 98, 590, 738, 830, 998, 1080, 4508, 9998, 20660, 29754, 99998, 980300, 999998, 6694218, 9999998, 49826988, 99999998, 117738578, 131505858, 132231404, 176445054, 177285320, 247979808, 252028388, 335180054, 336337790
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

Also numbers k such that k concatenated with itself gives the product of two numbers which differ by 3.

Examples

			7531357568//7531357564 = 8678339452 * 8678339457, where // denotes concatenation.
		

Crossrefs

Extensions

Edited by N. J. A. Sloane, Apr 13 2007

A116170 Numbers k such that k concatenated with k+2 gives the product of two numbers which differ by 1.

Original entry on oeis.org

590, 738, 830, 1080, 4508, 20660, 29754, 980300, 6694218, 49826988, 117738578, 131505858, 132231404, 176445054, 177285320, 247979808, 252028388, 335180054, 336337790, 404958680, 406231130, 431477468, 499519478
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Crossrefs

Programs

  • Maple
    As:= {}:
    for m from 2 to 20 do
       acands:= map(t -> rhs(op(t)), [msolve(a*(a+1)=2, 10^m+1)]);
       bcands:= map(t -> t*(t+1) mod 10^m, acands);
       good:= select(t -> bcands[t]>=10^(m-1), [$1..nops(acands)]);
       As:= As union convert(bcands[good], set);
    od: map(t -> t-2, sort(convert(As, list))); # Robert Israel, Aug 20 2019

A116294 Numbers k such that k*(k+1) gives the concatenation of two numbers m and m+1.

Original entry on oeis.org

3, 7, 78, 80919, 91809, 326510, 475025, 524975, 673490, 4323777, 4767132, 5232868, 5676223, 4083911141, 4975000250, 5024999750, 5916088859, 9503960496, 9604950396, 4186904462792, 4313465946775, 5686534053225, 5813095537208, 7504715871407, 7631277355390
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			80919 * (80919 + 1) = 6547965480, the concatenation of 65479 and 65479 + 1.
		

Crossrefs

Programs

  • Mathematica
    Union @@ ((x /. List@ ToRules@ Reduce[x (x+1) == 10^# y +y+1 && x>0 && 10^(#-1) <= y+1 < 10^#, {x,y}, Integers]) & /@ Range[13] /. x->{}) (* Giovanni Resta, Jul 08 2018 *)

Extensions

More terms from Giovanni Resta, Jul 08 2018

A116154 Numbers k such that k concatenated with itself gives the product of two numbers which differ by 1.

Original entry on oeis.org

132, 406, 510, 852, 7930, 66942, 113322, 440056, 5289256, 58477510, 111333222, 164378892, 183673470, 200444410, 206611570, 224376732, 277008310, 297520662, 305024040, 326530612, 353505556, 444000556, 479289942
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Crossrefs

Showing 1-7 of 7 results.