A106497
Numbers whose square is the concatenation of two identical numbers, i.e., of the form NN.
Original entry on oeis.org
36363636364, 45454545455, 54545454546, 63636363637, 72727272728, 81818181819, 90909090910, 428571428571428571429, 571428571428571428572, 714285714285714285715, 857142857142857142858
Offset: 1
63636363637 is in the sequence because 63636363637^2 = 4049586776940495867769 is 40495867769 written twice.
- Andrew Bridy, Robert J. Lemke Oliver, Arlo Shallit, and Jeffrey Shallit, The Generalized Nagell-Ljunggren Problem: Powers with Repetitive Representations, Experimental Math, 28 (2019), 428-439.
- R. Ondrejka, Problem 1130: Biperiod Squares, Journal of Recreational Mathematics, Vol. 14:4 (1981-82), 299. Solution by F. H. Kierstead, Jr., JRM, Vol. 15:4 (1982-83), 311-312.
- David W. Wilson, Table of n, a(n) for n = 1..1098
- Dr Barker, Can Numbers Like These Be Square?, YouTube video, 2023.
- Andrew Bridy, Robert J. Lemke Oliver, Arlo Shallit, and Jeffrey Shallit, The Generalized Nagell-Ljunggren Problem: Powers with Repetitive Representations, preprint arXiv:1707.03894 [math.NT], July 14 2017.
-
from itertools import count, islice
from sympy import sqrt_mod
def A106497_gen(): # generator of terms
for j in count(0):
b = 10**j
a = b*10+1
for k in sorted(sqrt_mod(0,a,all_roots=True)):
if a*b <= k**2 < a*(a-1):
yield k
A106497_list = list(islice(A106497_gen(),10)) # Chai Wah Wu, Feb 19 2024
A115556
Numbers whose square is the concatenation of two numbers 9*m and m.
Original entry on oeis.org
12857142857142857142857142857142857143, 25714285714285714285714285714285714286, 117391304347826086956521739130434782608695652173913043478261
Offset: 1
-
F:= proc(d) local R,F,t,b,r,q,s,m0,x0,k;
R:= NULL;
F:= ifactors(9*10^d+1)[2];
b:= mul(t[1]^floor(t[2]/2),t=F);
for r in numtheory:-divisors(b) do
x0:= (9*10^d+1)/r;
m0:= x0/r;
for k from ceil(sqrt(10^(d-1)/m0)) to floor(sqrt(10^d/m0)) do
R:= R, x0*k;
od
od;
R
end proc:
sort(map(F, [$1..90])); # Robert Israel, Aug 24 2023
A115527
Numbers k such that the concatenation of k with 2*k gives a square.
Original entry on oeis.org
3, 8163265306122448979592, 18367346938775510204082, 32653061224489795918368, 504986744097967428355005681100871102133568993813912384800
Offset: 1
A115426
Numbers k such that the concatenation of k with k+2 gives a square.
Original entry on oeis.org
7874, 8119, 69476962, 98010199, 108746354942, 449212110367, 544978035127, 870501316279, 998001001999, 1428394731903223, 1499870932756487, 1806498025502498, 1830668275445687, 1911470478658759, 2255786189655202
Offset: 1
8119//8121 = 9011^2, where // denotes concatenation.
98010199//98010200 = 99000100 * 99000102.
98010199//98010197 = 99000099 * 99000103.
Cf.
A030465,
A102567,
A115427,
A115428,
A115429,
A115430,
A115431,
A115432,
A115433,
A115434,
A115435,
A115436,
A115437.
-
from itertools import count, islice
from sympy import sqrt_mod
def A115426_gen(): # generator of terms
for j in count(0):
b = 10**j
a = b*10+1
for k in sorted(sqrt_mod(2,a,all_roots=True)):
if a*(b-2) <= k**2-2 < a*(a-3):
yield (k**2-2)//a
A115426_list = list(islice(A115426_gen(),40)) # Chai Wah Wu, Feb 20 2024
A115429
Numbers k such that the concatenation of k with k+8 gives a square.
Original entry on oeis.org
6001, 6433, 11085116, 44496481, 96040393, 115916930617, 227007035017, 274101929528, 434985419768, 749978863753, 996004003993, 1365379857457948, 1410590590957816, 1762388551055953, 2307340946901148, 2700383162251217
Offset: 1
6001//6009 = 7747^2, where // denotes concatenation.
96040393//96040400 = 98000200 * 98000202.
96040393//96040397 = 98000199 * 98000203.
96040393//96040392 = 98000198 * 98000204.
Cf.
A030465,
A102567,
A115426,
A115437,
A115428,
A115430,
A115431,
A115432,
A115433,
A115434,
A115435,
A115436,
A115440.
A115431
Numbers k such that the concatenation of k with k-2 gives a square.
Original entry on oeis.org
6, 5346, 8083, 10578, 45531, 58626, 2392902, 2609443, 7272838, 51248898, 98009803, 159728062051, 360408196038, 523637103531, 770378933826, 998000998003, 1214959556998, 1434212848998, 3860012299771, 4243705560771
Offset: 1
8083_8081 = 8991^2.
98009803_98009800 = 98999900 * 98999902, where _ denotes
concatenation
Cf.
A030465,
A102567,
A115426,
A115437,
A115428,
A115429,
A115430,
A115432,
A115433,
A115434,
A115435,
A115436,
A115442.
-
f:= proc(n) local S;
S:= map(t -> rhs(op(t))^2 mod 10^n+2, [msolve(x^2+2,10^n+1)]);
op(sort(select(t -> t-2 >= 10^(n-1) and t-2 < 10^n and issqr(t-2 + t*10^n), S)))
end proc:
seq(f(n),n=1..20); # Robert Israel, Feb 20 2019
A115428
Numbers k such that the concatenation of k with k+5 gives a square.
Original entry on oeis.org
1, 4, 20, 31, 14564, 38239, 69919, 120395, 426436, 902596, 7478020, 9090220, 6671332084, 8114264059, 8482227259, 9900250996, 2244338786836, 2490577152964, 2509440638591, 2769448208395, 7012067592220
Offset: 1
Cf.
A030465,
A102567,
A115426,
A115437,
A115429,
A115430,
A115431,
A115432,
A115433,
A115434,
A115435,
A115436,
A115439.
A115430
Numbers k such that the concatenation of k with k+9 gives a square.
Original entry on oeis.org
216, 287, 515, 675, 1175, 4320, 82640, 960795, 1322312, 4049591, 16955015, 34602080, 171010235, 181964891, 183673467, 187160072, 321920055, 326530616, 328818032, 343942560, 470954312, 526023432, 528925616, 534830855
Offset: 1
Cf.
A030465,
A102567,
A115426,
A115437,
A115428,
A115429,
A115431,
A115432,
A115433,
A115434,
A115435,
A115436,
A115441.
A115432
Numbers k such that the concatenation of k with k-4 gives a square.
Original entry on oeis.org
65, 6653, 9605, 218413, 283720, 996005, 58446925, 99960005, 6086712229, 7385370133, 8478948853, 9999600005, 120178240093, 161171620229, 358247912200, 426843573160, 893417179213, 999996000005, 23376713203604
Offset: 1
Cf.
A030465,
A102567,
A115426,
A115437,
A115428,
A115429,
A115430,
A115431,
A115433,
A115434,
A115435,
A115436,
A115443.
-
f:= proc(d) uses NumberTheory; local m,r;
m:= 10^d + 1;
if QuadraticResidue(-4,m) = -1 then return NULL fi;
r:= ModularSquareRoot(-4, m);
op(sort(select(t -> t >= 10^(d-1)+4 and t < 10^d+4, map(t -> ((r*t mod m)^2+4)/m, convert(RootsOfUnity(2,m),list)))))
end proc:
map(f, [$1..20]); # Robert Israel, Sep 12 2023
A115435
Numbers k such that the concatenation of k with k-8 gives a square.
Original entry on oeis.org
2137, 2892, 6369, 12217, 21964, 28233, 42312, 4978977, 9571608, 18642249, 32288908, 96039609, 200037461217, 305526508312, 570666416233, 638912248204, 996003996009, 1846991026584, 3251664327537, 4859838227992
Offset: 1
18642249_18642241 = 43176671^2.
Cf.
A030465,
A102567,
A115426,
A115437,
A115428,
A115429,
A115430,
A115431,
A115432,
A115433,
A115434,
A115436,
A115446.
Showing 1-10 of 48 results.
Comments