cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 30 results. Next

A115556 Numbers whose square is the concatenation of two numbers 9*m and m.

Original entry on oeis.org

12857142857142857142857142857142857143, 25714285714285714285714285714285714286, 117391304347826086956521739130434782608695652173913043478261
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Comments

a(4)=156521739130434782608695652173913043478260869565217391304348.
From Robert Israel, Aug 24 2023: (Start)
If 9 * 10^d + 1 = a^2 * b with a > 1, then a * b * c is a term if a^2/(90 + 10^(1-d)) < c^2 < a^2/(9 + 10^(-d)). For example, 9 * 10^d + 1 is divisible by 7^2 for d == 37 (mod 42), and then (9 * 10^d + 1)/7 and 2*(9 * 10^d + 1)/7 are terms. In particular, the sequence is infinite. (End)

Crossrefs

Programs

  • Maple
    F:= proc(d) local R,F,t,b,r,q,s,m0,x0,k;
         R:= NULL;
         F:= ifactors(9*10^d+1)[2];
         b:= mul(t[1]^floor(t[2]/2),t=F);
         for r in numtheory:-divisors(b) do
           x0:= (9*10^d+1)/r;
           m0:= x0/r;
           for k from ceil(sqrt(10^(d-1)/m0)) to floor(sqrt(10^d/m0)) do
             R:= R, x0*k;
           od
         od;
           R
    end proc:
    sort(map(F, [$1..90])); # Robert Israel, Aug 24 2023

Extensions

Definition modified by Georg Fischer, Jul 26 2019

A115528 Numbers k such that k^2 is the concatenation of two numbers m and 2*m.

Original entry on oeis.org

6, 28571428571428571428572, 42857142857142857142858, 57142857142857142857144, 2247191011235955056179775280898876404494382022471910112360
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Examples

			6^2 = 3_6.
		

Crossrefs

A115549 Numbers k such that the concatenation of k with 8*k gives a square.

Original entry on oeis.org

3, 12, 28, 63, 112, 278, 1112, 2778, 11112, 27778, 111112, 277778, 1111112, 2777778, 4938272, 7716050, 11111112, 12802888, 13151250, 13504288, 13862002, 14224392, 14591458, 14963200, 15339618, 15720712, 16106482, 16496928, 16892050, 17291848, 17696322, 18105472
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Comments

If k = 10*R_m + 2, with m >= 1, then the concatenation of k with 8*k equals (30*R_m + 6)^2, so A047855 \ {1,2} is a subsequence. - Bernard Schott, Apr 09 2022
Numbers k such that A009470(k) is a square. - Michel Marcus, Apr 09 2022
The numbers 28, 278, 2778, ..., 2*10^k + 7*(10^k - 1)/9 + 1, ..., k >= 1, are terms, because the concatenation forms the squares 28224 = 168^2, 2782224 = 1668^2, 277822224 = 16668^2, ..., (10^m + 2*(10^m - 1)/3 + 2)^2, m >= 2, ... - Marius A. Burtea, Apr 10 2022

Examples

			3_24 = 18^2.
11112_88896 = 33336^2.
		

Crossrefs

Programs

  • Magma
    [n:n in [1..20000000]|IsSquare(Seqint(Intseq(8*n) cat Intseq(n)))]; // Marius A. Burtea, Apr 10 2022
  • PARI
    isok(k) = issquare(eval(Str(k, 8*k))); \\ Michel Marcus, Apr 09 2022
    

Extensions

More terms from Marius A. Burtea, Apr 13 2022

A115529 Numbers k such that the concatenation of 2*k with k gives a square.

Original entry on oeis.org

1632653061224489796, 3673469387755102041, 6530612244897959184, 108166576527852893455922120064900, 130881557598702001081665765278529, 155759870200108166576527852893456, 182801514332071389940508382909681
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Comments

Numbers of the form k = a*b^2 where 10^(d-1) <= k < 10^d and (2*10^d+1)/a is a square. - Robert Israel, Jan 13 2021

Examples

			3265306122448979592_1632653061224489796 = 5714285714285714286^2.
		

Crossrefs

Programs

  • Maple
    f:= proc(d) local R,q,F,G,s,t,a,u,i;
       q:= 2*10^d+1;
       F:= ifactors(q)[2];
       G:= map(t -> [t[1],floor(t[2]/2)], F);
       s:= mul(t[1]^t[2],t=G);
       R:= NULL:
       for a in numtheory:-divisors(s) do
         u:= q/a^2;
         R:= R, seq(i^2*u, i=ceil(sqrt(10^(d-1)/u))..floor(sqrt((10^d-1)/u)))
       od;
       R
    end proc:
    seq(f(d),d=1..33); # Robert Israel, Jan 13 2021

A115531 Numbers k such that the concatenation of k with 3*k gives a square.

Original entry on oeis.org

816326530612244897959183673469388, 1836734693877551020408163265306123, 3265306122448979591836734693877552, 3746097814776274713839750260145681581685744016649323621228
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Comments

If 3+10^m is not squarefree, say 3+10^m = u^2*v where v is squarefree, then the terms with length m are t^2*v where 10^m > 3*t^2*v >= 10^(m-1). The first m for which 3+10^m is not squarefree are 34, 59, 60, 61, 67. - Robert Israel, Aug 07 2019
Since 3+10^m is divisible by 7^2 for m = 34 + 42*k, the sequence contains 4*(3+10^m)/49, 9*(3+10^m)/49 and 16*(3+10^m)/49 for such m, and in particular is infinite. - Robert Israel, Aug 08 2019

Crossrefs

Programs

  • Maple
    Res:= NULL:
    for m from 1 to 67 do
    if not numtheory:-issqrfree(3+10^m) then
       F:= select(t -> t[2]=1, ifactors(3+10^m)[2]);
       v:= mul(t[1], t=F);
       Res:= Res, seq(t^2*v, t = ceil(sqrt(10^(m-1)/(3*v))) .. floor(sqrt(10^m/(3*v))))
    fi
    od:
    Res;  # Robert Israel, Aug 07 2019

A115555 Numbers k such that the concatenation of 9*k with k gives a square.

Original entry on oeis.org

1836734693877551020408163265306122449, 7346938775510204081632653061224489796, 15311909262759924385633270321361058601134215500945179584121, 27221172022684310018903591682419659735349716446124763705104
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Crossrefs

A115530 Numbers k such that k^2 is the concatenation of two numbers 2*m and m.

Original entry on oeis.org

5714285714285714286, 8571428571428571429, 11428571428571428572, 465116279069767441860465116279070, 511627906976744186046511627906977, 558139534883720930232558139534884, 604651162790697674418604651162791
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Examples

			5714285714285714286^2 = 3265306122448979592_1632653061224489796.
		

Crossrefs

Extensions

Definition modified by Georg Fischer, Jul 25 2019

A115532 Numbers k such that k^2 is the concatenation of two numbers m and 3*m.

Original entry on oeis.org

2857142857142857142857142857142858, 4285714285714285714285714285714287, 5714285714285714285714285714285716, 19354838709677419354838709677419354838709677419354838709678
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Crossrefs

A115533 Numbers k such that the concatenation of 3*k with k gives a square.

Original entry on oeis.org

24489796, 55102041, 97959184, 15976331361, 28402366864, 44378698225, 63905325444, 86982248521, 24489795918367346938775510204081632653061224489796
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Examples

			73469388_24489796 = 85714286^2.
		

Crossrefs

A115534 Numbers k such that k^2 is the concatenation of two numbers 3*m and m.

Original entry on oeis.org

85714286, 128571429, 171428572, 69230769231, 92307692308, 115384615385, 138461538462, 161538461539, 85714285714285714285714285714285714285714285714286
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Examples

			85714286^2 = 73469388_24489796.
		

Crossrefs

Extensions

Definition modified by Georg Fischer, Jul 26 2019
Showing 1-10 of 30 results. Next