cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A047855 a(n) = A047848(7,n).

Original entry on oeis.org

1, 2, 12, 112, 1112, 11112, 111112, 1111112, 11111112, 111111112, 1111111112, 11111111112, 111111111112, 1111111111112, 11111111111112, 111111111111112, 1111111111111112, 11111111111111112, 111111111111111112, 1111111111111111112, 11111111111111111112, 111111111111111111112
Offset: 0

Views

Author

Keywords

Comments

n-th difference of a(n), a(n-1), ..., a(0) is A001019(n-1) for n >= 1.
Range of A164898, apart from first term. - Reinhard Zumkeller, Aug 30 2009
a(n) is the number of integers less than or equal to 10^n, whose initial digit is 1. - Michel Marcus, Jul 04 2019
a(n) is 2^n represented in bijective base-2 numeration. - Alois P. Heinz, Aug 26 2019
This sequence proves both A028842 (numbers with prime product of digits) and A028843 (numbers with prime iterated product of digits) are infinite. Proof: Suppose either of those sequences is finite. Label as omega the supposed last term. Compute n = ceiling(log_10 omega) + 1. Then a(n) > omega. The product of digits of a(n) is 2, contradicting the assumption that omega is the final term of either A028842 or A028843. - Alonso del Arte, Apr 14 2020
For n >= 2, the concatenation of a(n) with 8*a(n) equals (3*R_n+3)^2, where R_n = A002275(n) is the repunit with n 1's; hence this sequence, except for {1,2}, is a subsequence of A115549. - Bernard Schott, Apr 30 2022

Crossrefs

Programs

  • Magma
    [(10^n + 8)/9: n in [0..40]]; // G. C. Greubel, Jan 11 2025
    
  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=10*a[n-1]+1 od: seq(a[n]+1, n=0..18); # Zerinvary Lajos, Mar 20 2008
  • Mathematica
    Join[{1}, Table[FromDigits[PadLeft[{2}, n, 1]], {n, 30}]] (* Harvey P. Dale, Apr 17 2013 *)
    (10^Range[0, 29] + 8)/9 (* Alonso del Arte, Apr 12 2020 *)
  • PARI
    a(n)=if(n==0,1,if(n==1,2,11*a(n-1)-10*a(n-2)))
    for(i=0,10,print1(a(i),",")) \\ Lambert Klasen, Jan 28 2005
    
  • Python
    def A047855(n): return (pow(10,n) +8)//9
    print([A047855(n) for n in range(41)]) # G. C. Greubel, Jan 11 2025
  • Sage
    [gaussian_binomial(n,1,10)+1 for n in range(17)] # Zerinvary Lajos, May 29 2009
    
  • Scala
    (List.fill(20)(10: BigInt)).scanLeft(1: BigInt)( * ).map(n => (n + 8)/9) // Alonso del Arte, Apr 12 2020
    

Formula

a(n) = (10^n + 8)/9. - Ralf Stephan, Feb 14 2004
a(0) = 1, a(1) = 2, a(n) = 11*a(n-1) - 10*a(n-2) for n > 1. - Lambert Klasen (lambert.klasen(AT)gmx.net), Jan 28 2005
G.f.: (1 - 9*x)/(1 - 11*x + 10*x^2). - Philippe Deléham, Oct 05 2009
a(n) = 10*a(n-1) - 8 (with a(0) = 1). - Vincenzo Librandi, Aug 06 2010
From Elmo R. Oliveira, Apr 03 2025: (Start)
E.g.f.: exp(x)*(8 + exp(9*x))/9.
a(n) = (A062397(n) - A002281(n))/2. (End)

Extensions

More terms from Harvey P. Dale, Apr 17 2013

A380428 Numbers k for which nonnegative integers x and y exist such that k is the concatenation of x and y as well as k = (x + y)^2.

Original entry on oeis.org

81, 100, 2025, 3025, 88209, 494209, 4941729, 7441984, 24502500, 25502500, 52881984, 60481729, 300814336, 493817284, 6049417284, 6832014336, 20408122449, 21948126201, 33058148761, 35010152100, 43470165025, 101558217124, 108878221089, 123448227904, 127194229449, 152344237969
Offset: 1

Views

Author

Felix Huber, Jan 25 2025

Keywords

Comments

Subsequence of A000290.
From David A. Corneth, Apr 26 2025: (Start)
If y has q digits then a term m is of the form (x + y) = 10^q * x + y. Choosing some y we can solve for x (the equation is a quadratic with respect to x) and see if it produces a term.
y comes from A238712.
The sequence is infinite; it contains (25*100^i +- 5*10^i)^2 = concat(25*100^i +- 5*10^i, 25*100^i) for all i >= 0.
Neither x nor y can have a leading 0. (End)

Examples

			2025 is in the sequence because (20 + 25)^2 = 2025.
100 is in the sequence because (10 + 0)^2 = 100.
88209 is in the sequence because (88 + 209)^2 = 88209.
From _David A. Corneth_, Apr 26 2025: (Start)
9801 is not in the sequence even though (98 + 01)^2 = 9801 but 01 has a leading 0 which is disallowed.
If a term m ends in y = 209 where y has three digits we have 10^3*x + y = (x + y)^2. Solving for x gives x = 88 or x = 494 corresponding to terms 88209 and 494209. (End)
		

Crossrefs

Programs

  • Maple
    A380428:=proc(n)
        option remember;
        local a,i,k,x,y;
        if n=1 then
            81
        elif n=2 then
            100
        else
            for a from isqrt(procname(n-1))+1 do
                k:=length(a^2);
                for i to k-1 do
                    x:=floor(a^2/10^i);
                    y:=a^2-x*10^i;
                    if x+y=a and length(x)+length(y)=k then
                        return a^2
                    fi
                od
            od
        fi;
    end proc;
    seq(A380428(n),n=1..26);
Showing 1-2 of 2 results.