A102567
Numbers k such that the concatenation of k with itself is a biperiod square.
Original entry on oeis.org
13223140496, 20661157025, 29752066116, 40495867769, 52892561984, 66942148761, 82644628100, 183673469387755102041, 326530612244897959184, 510204081632653061225, 734693877551020408164
Offset: 1
C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 15 2005
13223140496 concatenated with 13223140496 is 1322314049613223140496 = 36363636364^2.
40495867769 is in the sequence because writing it twice gives the square number 4049586776940495867769 = 63636363637^2.
- Andrew Bridy, Robert J. Lemke Oliver, Arlo Shallit, and Jeffrey Shallit, The Generalized Nagell-Ljunggren Problem: Powers with Repetitive Representations, Experimental Math, 28 (2019), 428-439.
- R. Ondrejka, Problem 1130: Biperiod Squares, Journal of Recreational Mathematics, Vol. 14:4 (1981-82), 299. Solution by F. H. Kierstead, Jr., JRM, Vol. 15:4 (1982-83), 311-312.
- David W. Wilson, Table of n, a(n) for n = 1..1098
- Dr Barker, Can Numbers Like These Be Square?, YouTube video, 2023.
- Andrew Bridy, Robert J. Lemke Oliver, Arlo Shallit, and Jeffrey Shallit, The Generalized Nagell-Ljunggren Problem: Powers with Repetitive Representations, preprint arXiv:1707.03894 [math.NT], July 14 2017.
-
with(numtheory): Digits:=50:for d from 1 to 35 do tendp1:=10^d+1: tendp1fact:=ifactors(tendp1)[2]: n:=mul(piecewise(tendp1fact[i][2] mod 2=1,tendp1fact[i][1],1),i=1..nops(tendp1fact)):for i from ceil(sqrt((10^(d-1))/n)) to floor(sqrt((10^d-1)/n)) do printf("%d, ",n*i^2) od: od:
-
A102567L[n_] := Catenate@Table[Module[{fac = FactorInteger[10^k + 1], min}, If[Max@fac[[All, -1]] == 1, {}, min = Times @@ Cases[fac, {a_, A102567L%5B30%5D%20(*%20_JungHwan%20Min">?OddQ} :> a]; Table[min s^2, {s, Ceiling@Sqrt[10^(k - 1)/min], Floor@Sqrt[(10^k - 1)/min]}]]], {k, n}]; A102567L[30] (* _JungHwan Min, Dec 11 2016 *)
A102567Q = IntegerQ@Sqrt@FromDigits[Join[#, #] &@IntegerDigits[#]] & (* JungHwan Min, Dec 11 2016 *)
-
p = [3, 487, 56598313]; \\ A045616
b(n) = my(d = gcd(n, lift(Mod(10,n)^n)+1), s = 1); for(j=1, #p, my(e = znorder(Mod(10, p[j]))); if((e % 2 == 0) && (n % (e/2) == 0) && (n/(e/2) % 2 == 1), my(v = valuation(d, p[j])); d /= p[j]^v; s *= p[j]^((v+valuation(10^e-1, p[j]))\2))); my(f = factor(d)); for(i=1, #f~, s *= f[i,1]^((f[i,2]+1)\2)); s; \\ giving s such that 10^n + 1 = s^2*t where t is squarefree, considering only the three already-known terms of A045616
A102567_length_n(n) = my(t = (10^n+1)/b(n)^2, lowlim = 1+sqrtint(10^(n-1)\t), uplim = sqrtint((10^n-1)\t)); vector(uplim-lowlim+1, i, (lowlim-1+i)^2 * t) \\ terms of the form a^2*t such that 10^(n-1) <= a^2*t <= 10^n - 1
\\ Jianing Song, Nov 01 2024
-
from itertools import count, islice
from sympy import sqrt_mod
def A102567_gen(): # generator of terms
for j in count(0):
b = 10**j
a = b*10+1
for k in sorted(sqrt_mod(0,a,all_roots=True)):
if a*b <= k**2 < a*(a-1):
yield k**2//a
A102567_list = list(islice(A102567_gen(),10)) # Chai Wah Wu, Feb 19 2024
A115556
Numbers whose square is the concatenation of two numbers 9*m and m.
Original entry on oeis.org
12857142857142857142857142857142857143, 25714285714285714285714285714285714286, 117391304347826086956521739130434782608695652173913043478261
Offset: 1
-
F:= proc(d) local R,F,t,b,r,q,s,m0,x0,k;
R:= NULL;
F:= ifactors(9*10^d+1)[2];
b:= mul(t[1]^floor(t[2]/2),t=F);
for r in numtheory:-divisors(b) do
x0:= (9*10^d+1)/r;
m0:= x0/r;
for k from ceil(sqrt(10^(d-1)/m0)) to floor(sqrt(10^d/m0)) do
R:= R, x0*k;
od
od;
R
end proc:
sort(map(F, [$1..90])); # Robert Israel, Aug 24 2023
A115527
Numbers k such that the concatenation of k with 2*k gives a square.
Original entry on oeis.org
3, 8163265306122448979592, 18367346938775510204082, 32653061224489795918368, 504986744097967428355005681100871102133568993813912384800
Offset: 1
A115439
Numbers m such that the square of m is the concatenation of two numbers k and k+5.
Original entry on oeis.org
4, 7, 45, 56, 38163, 61838, 83618, 346980, 653021, 950051, 8647555, 9534265, 8167822283, 9007920992, 9209900792, 9950000501, 4737445289221, 4990568257187, 5009431742814, 5262554710780, 8373808925585, 8626931893551, 34323166122692, 34532758615690, 49625657225895, 49835249718893
Offset: 1
Cf.
A030467,
A057934,
A106497,
A115428,
A115427,
A115438,
A115440,
A115441,
A115442,
A115443,
A115444,
A115445,
A115446,
A115447.
A115446
Numbers k such that the square of k is the concatenation of two numbers m and m-8.
Original entry on oeis.org
4623, 5378, 7981, 34953, 46866, 53135, 65048, 7056187, 9783460, 43176671, 56823330, 97999801, 447255476453, 552744523548, 755424659535, 799319866014, 997999998001, 4297663349524, 5702336650477, 6971253996228, 7574200549228, 8843117894979, 3505613322543666, 3757750389995601, 3948262973033353
Offset: 1
18642249_18642241 = 43176671^2.
Cf.
A030467,
A106497,
A115435,
A115427,
A115438,
A115439,
A115440,
A115441,
A115442,
A115443,
A115444,
A115445,
A115447.
A115427
Numbers k such that k^2 is the concatenation of two numbers m and m+2.
Original entry on oeis.org
8874, 9011, 83352842, 99000101, 329767122288, 670232877713, 738226276373, 933006600341, 999000001001, 3779410975143115, 3872816717528067, 4250291784692550, 4278630943941867, 4372036686326819, 4749511753491302
Offset: 1
Cf.
A030467,
A106497,
A115426,
A115438,
A115439,
A115440,
A115441,
A115442,
A115443,
A115444,
A115445,
A115446,
A115447.
A115438
Numbers whose square is the concatenation of two numbers k and k+4.
Original entry on oeis.org
2, 310, 453, 548, 691, 856, 4382, 5619, 72730, 346533, 653468, 9090908, 94117646, 334665333, 336032387, 378253328, 390977442, 439928491, 483516486, 516483515, 560071510, 609022559, 621746673, 663967614, 665334668
Offset: 1
120085_120089 = 346533^2.
Cf.
A030467,
A106497,
A115437,
A115427,
A115439,
A115440,
A115441,
A115442,
A115443,
A115444,
A115445,
A115446,
A115447.
The initial "2" (which is admittedly somewhat dubious) added by
N. J. A. Sloane, Aug 13 2008
A115440
Numbers whose square is the concatenation of two numbers k and k+8.
Original entry on oeis.org
7747, 8021, 33294318, 66705683, 98000201, 340465755425, 476452552745, 523547447256, 659534244576, 866013200681, 998000002001, 3695104677080134, 3755782995538768, 4198081170077531, 4803478892324966, 5196521107675035
Offset: 1
Cf.
A030467,
A106497,
A115429,
A115427,
A115438,
A115439,
A115441,
A115442,
A115443,
A115444,
A115445,
A115446,
A115447.
A115441
Numbers whose square is the concatenation of two numbers k and k+9.
Original entry on oeis.org
465, 536, 718, 822, 3428, 6573, 90907, 980202, 3636361, 6363640, 41176468, 58823533, 413533838, 426573430, 428571426, 432620009, 567379992, 571428575, 573426571, 586466163, 686261111, 725274729, 727272725, 731321308
Offset: 1
Cf.
A030467,
A106497,
A115430,
A115427,
A115438,
A115439,
A115440,
A115442,
A115443,
A115444,
A115445,
A115446,
A115447.
A115442
Numbers whose square is the concatenation of two numbers k and k-2.
Original entry on oeis.org
8, 7312, 8991, 32524, 67477, 76568, 4891730, 5108271, 8528094, 71588336, 98999901, 399659933007, 600340066994, 723627738227, 877712329768, 998999999001, 3485626998114, 3787100274614, 6212899725387, 6514373001887
Offset: 1
Cf.
A030467,
A106497,
A115431,
A115427,
A115438,
A115439,
A115440,
A115441,
A115443,
A115444,
A115445,
A115446,
A115447.
-
Select[Table[Sqrt[k*10^IntegerLength[k]+k-2],{k,4,86*10^5}],IntegerQ] (* The program generates the first 9 terms of the sequence. *) (* Harvey P. Dale, Nov 02 2024 *)
Showing 1-10 of 47 results.
Comments