cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A115431 Numbers k such that the concatenation of k with k-2 gives a square.

Original entry on oeis.org

6, 5346, 8083, 10578, 45531, 58626, 2392902, 2609443, 7272838, 51248898, 98009803, 159728062051, 360408196038, 523637103531, 770378933826, 998000998003, 1214959556998, 1434212848998, 3860012299771, 4243705560771
Offset: 1

Views

Author

Giovanni Resta, Jan 24 2006

Keywords

Comments

From Robert Israel, Feb 20 2019: (Start) The same as A116117 and A116135 (see link).
So there are two equivalent definitions: numbers k such that k concatenated with k-6 gives the product of two numbers which differ by 4; and numbers k such that k concatenated with k-3 gives the product of two numbers which differ by 2.
For each k >= 1, 10^(4*k)-2*10^(3*k)+10^(2*k)-2*10^k+3 is a term.
If k is a term and k-2 has length m, then all prime factors of 10^m+1 must be congruent to 1 or 3 (mod 8). In particular, we can't have m == 2 (mod 4) or m == 3 (mod 6), as in those cases 10^m+1 would be divisible by 101 or 7 respectively. (End)

Examples

			8083_8081 = 8991^2.
98009803_98009800 = 98999900 * 98999902, where _ denotes
concatenation
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local S;
      S:= map(t -> rhs(op(t))^2 mod 10^n+2, [msolve(x^2+2,10^n+1)]);
      op(sort(select(t -> t-2 >= 10^(n-1) and t-2 < 10^n and issqr(t-2 + t*10^n), S)))
    end proc:
    seq(f(n),n=1..20); # Robert Israel, Feb 20 2019

A115439 Numbers m such that the square of m is the concatenation of two numbers k and k+5.

Original entry on oeis.org

4, 7, 45, 56, 38163, 61838, 83618, 346980, 653021, 950051, 8647555, 9534265, 8167822283, 9007920992, 9209900792, 9950000501, 4737445289221, 4990568257187, 5009431742814, 5262554710780, 8373808925585, 8626931893551, 34323166122692, 34532758615690, 49625657225895, 49835249718893
Offset: 1

Views

Author

Giovanni Resta, Jan 24 2006

Keywords

Comments

All numbers of the form f(n)=9(n).5.0(2n).5.0(n-1).1 where n>0 are in the sequence because if k(n)=9(n).0(n).25.0(n-1).9(n).6 then f(n)^2=k(n).(k(n)+5). For example f(2)=9950000501; k(2)=9900250996 and f(2)^2=9950000501^2=9900250996.9900251001 =k(2).(k(2)+5). - Farideh Firoozbakht, Nov 26 2006
m^2 = (k)|(k+5) = (k)|(k) + 5 = (10^q + 1)*k + 5 where | denotes concatenation and q is the number of digits of k gives a nonlinear equation that can be solved using the solver below. - David A. Corneth, Jan 02 2021

Examples

			38163^2 = 14564_14569.
		

Crossrefs

Extensions

More terms from David A. Corneth, Jan 02 2021

A115446 Numbers k such that the square of k is the concatenation of two numbers m and m-8.

Original entry on oeis.org

4623, 5378, 7981, 34953, 46866, 53135, 65048, 7056187, 9783460, 43176671, 56823330, 97999801, 447255476453, 552744523548, 755424659535, 799319866014, 997999998001, 4297663349524, 5702336650477, 6971253996228, 7574200549228, 8843117894979, 3505613322543666, 3757750389995601, 3948262973033353
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Examples

			18642249_18642241 = 43176671^2.
		

Crossrefs

Extensions

More terms from David A. Corneth, Jan 02 2021

A115427 Numbers k such that k^2 is the concatenation of two numbers m and m+2.

Original entry on oeis.org

8874, 9011, 83352842, 99000101, 329767122288, 670232877713, 738226276373, 933006600341, 999000001001, 3779410975143115, 3872816717528067, 4250291784692550, 4278630943941867, 4372036686326819, 4749511753491302
Offset: 1

Views

Author

Giovanni Resta, Jan 24 2006

Keywords

Examples

			9011^2 = 8119_8121.
		

Crossrefs

A115438 Numbers whose square is the concatenation of two numbers k and k+4.

Original entry on oeis.org

2, 310, 453, 548, 691, 856, 4382, 5619, 72730, 346533, 653468, 9090908, 94117646, 334665333, 336032387, 378253328, 390977442, 439928491, 483516486, 516483515, 560071510, 609022559, 621746673, 663967614, 665334668
Offset: 1

Views

Author

Giovanni Resta, Jan 24 2006

Keywords

Comments

From Farideh Firoozbakht, Nov 26 2006: (Start)
1. All numbers of the form f(n)=3(n).4.6(n).5.3(n+1) are in the sequence because if k(n)=1(n).2.0(n+1).8(n).5 then f(n)^2= k(n).(k(n)+4). For example f(3)=333466653333; k(3)=111200008885 and f(3)^2=333466653333^2=k(3).(k(3)+4)=111200008885.111200008889.
2. All numbers of the form g(n)=6(n).5.3(n).4.6(n).8 are in the sequence because g(0)=548 is in the sequence(548^2=300.304) and for n>0 if h(n)=4(n).2.6(n-1).70.2(n).0 then g(n)^2=h(n).(h(n)+4). For example g(5)=666665333334666668; h(5)=444442666670222220 and g(5)^2=h(5).(h(5)+4)=444442666670222220.444442666670222224. (End)

Examples

			120085_120089 = 346533^2.
		

Crossrefs

Extensions

The initial "2" (which is admittedly somewhat dubious) added by N. J. A. Sloane, Aug 13 2008

A115440 Numbers whose square is the concatenation of two numbers k and k+8.

Original entry on oeis.org

7747, 8021, 33294318, 66705683, 98000201, 340465755425, 476452552745, 523547447256, 659534244576, 866013200681, 998000002001, 3695104677080134, 3755782995538768, 4198081170077531, 4803478892324966, 5196521107675035
Offset: 1

Views

Author

Giovanni Resta, Jan 24 2006

Keywords

Examples

			6001_6009 = 7747^2.
		

Crossrefs

A115441 Numbers whose square is the concatenation of two numbers k and k+9.

Original entry on oeis.org

465, 536, 718, 822, 3428, 6573, 90907, 980202, 3636361, 6363640, 41176468, 58823533, 413533838, 426573430, 428571426, 432620009, 567379992, 571428575, 573426571, 586466163, 686261111, 725274729, 727272725, 731321308
Offset: 1

Views

Author

Giovanni Resta, Jan 24 2006

Keywords

Examples

			82640_82649 = 90907^2.
		

Crossrefs

A115443 Numbers whose square is the concatenation of two numbers k and k-4.

Original entry on oeis.org

81, 8157, 9801, 467347, 532654, 998001, 76450589, 99980001, 7801738415, 8593817623, 9208120793, 9999800001, 346667333467, 401461854015, 598538145986, 653332666534, 945207479453, 999998000001, 48349470735060
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Examples

			9605_9601 = 9801^2.
		

Crossrefs

A115444 Numbers whose square is the concatenation of two numbers k and k-5.

Original entry on oeis.org

46, 55, 949951, 979654, 7771781679, 7900890080, 9920892100, 9949999501, 38773083432317, 41534158410842, 47433813119408, 52566186880593, 58465841589159, 61226916567684, 72258945037435, 86156896546725
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Examples

			902406_902401 = 949951^2.
		

Crossrefs

A115445 Numbers whose square is the concatenation of two numbers k and k-7.

Original entry on oeis.org

9, 13, 3656545, 4565636, 5434365, 6343456, 3646962589704198389, 6353037410295801612, 9101508044249652935, 7903999111431765764698711045778, 9722180929613583946516892863960
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Examples

			4023943_4023936 = 6343456^2.
		

Crossrefs

Showing 1-10 of 11 results. Next