cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A116288 Numbers k such that k*(k+4) gives the concatenation of a number m with itself.

Original entry on oeis.org

7, 97, 451, 546, 689, 854, 997, 4380, 5617, 9997, 72728, 99997, 346531, 653466, 999997, 9090906, 9999997, 94117644, 99999997, 334665331, 336032385, 378253326, 390977440, 439928489, 483516484, 516483513, 560071508
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

Contains 10^m - 3 hence the sequence is infinite. - David A. Corneth, Feb 20 2024

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from sympy import sqrt_mod
    def A116288_gen(): # generator of terms
        for j in count(0):
            b = 10**j
            a = b*10+1
            for k in sorted(sqrt_mod(4,a,all_roots=True)):
                if a*b <= k**2-4 < a*(a-1):
                    yield k-2
    A116288_list = list(islice(A116288_gen(),40)) # Chai Wah Wu, Feb 20 2024

A116290 Numbers k such that k * (k+6) is the concatenation of a number m with itself.

Original entry on oeis.org

5, 95, 462, 533, 715, 819, 995, 3425, 6570, 9995, 90904, 99995, 980199, 999995, 3636358, 6363637, 9999995, 41176465, 58823530, 99999995, 413533835, 426573427, 428571423, 432620006, 567379989, 571428572, 573426568, 586466160, 686261108, 725274726, 727272722
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

From Robert Israel, Apr 08 2025: (Start)
Numbers k such that k * (k + 6) = (10^d + 1) * m for some d and m where m has d digits.
Contains 10^d-5 for all d >= 1. (End)

Crossrefs

Programs

  • Maple
    f:= proc(d) local R,t,a,b,x,q;
       t:= 10^d+1;
       R:= NULL;
       for a in numtheory:-divisors(t) do
         b:= t/a;
         if igcd(a,b) > 1 then next fi;
         for x from chrem([0,-6],[a,b]) by t do
           q:= x*(x+6)/t;
           if q >= 10^d then break fi;
           if q >= 10^(d-1) then R:= R, x fi;
       od od;
       sort([R]);
    end proc:
    seq(op(f(d)),d=1..10); # Robert Israel, Apr 08 2025

Extensions

Name edited by Robert Israel, Apr 08 2025

A116158 Numbers k such that k concatenated with itself gives the product of two numbers which differ by 5.

Original entry on oeis.org

6, 96, 150, 186, 324, 376, 666, 996, 2046, 3000, 9996, 82650, 99996, 100384, 466716, 999996, 1322316, 4049584, 9999996, 67820074, 99999996, 110003884, 135734074, 156502836, 196043286, 213017754, 238849000, 261405396
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Crossrefs

A116281 Numbers k such that k*(k+5) gives the concatenation of two numbers m and m-1.

Original entry on oeis.org

39, 57, 32262231, 67737765, 79321055, 3341093417798787499092, 3861488851737861033960, 4747922651210186579786, 5252077348789813420210, 6138511148262138966036, 6658906582201212500904, 7232275368591793618230
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			79321055 * 79321060 = 62918301//62918300, where // denotes concatenation.
		

Crossrefs

A116303 n times n+5 gives the concatenation of two numbers m and m+2.

Original entry on oeis.org

3, 84, 76981, 714688, 952312, 90438189, 96320542, 32980078899027, 34346653774236, 42816188292271, 42881990066486, 57118009933510, 57183811707725, 65653346225760, 67019921100969, 81321742742208
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			96320542 * 96320547 = 92776472//92776474, where // denotes
concatenation.
		

Crossrefs

Showing 1-5 of 5 results.