cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A116357 Number of partitions of n into products of two successive primes (A006094).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 1, 2, 0, 0, 1, 0, 1, 2, 0, 0, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 3, 0, 1, 2, 0, 2, 3, 0, 1, 2, 1, 2, 3, 0, 1, 3, 1, 3, 3, 0, 2, 3, 1, 3, 3, 1, 2, 3, 1, 3, 4, 1, 3, 3, 1, 4, 4, 1, 3, 3, 2, 4, 4, 1, 3, 5
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 12 2006

Keywords

Comments

a(A116358(n)) = 0; a(A116359(n)) > 0;
a(n) < A101048(n).

Examples

			a(41) = #{2*3 + 5*7} = 1;
a(42) = #{2*3+2*3+2*3+2*3+2*3+2*3+2*3, 2*3+2*3+3*5+3*5} = 2.
		

Crossrefs

Programs

  • Maple
    N:= 200: # to get a(1) to a(N)
    Primes:= select(isprime,[2,seq(i,i=3..1+floor(sqrt(N)),2)]):
    G:= mul(1/(1 - x^(Primes[i]*Primes[i+1])), i=1..nops(Primes)-1):
    S:= series(G,x,N+1):
    seq(coeff(S,x,j),j=1..N); # Robert Israel, Dec 09 2016
  • Mathematica
    m = 105; kmax = PrimePi[Sqrt[m]]; Product[1/(1-x^(Prime[k]*Prime[k+1])), {k, 1, kmax}] + O[x]^(m+1) // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Mar 09 2019, after Robert Israel *)

Formula

G.f.: Product_{k >= 1} 1/(1 - x^(prime(k)*prime(k+1))). - Robert Israel, Dec 09 2016

A116359 Numbers that can be written as sum of products of two successive primes.

Original entry on oeis.org

6, 12, 15, 18, 21, 24, 27, 30, 33, 35, 36, 39, 41, 42, 45, 47, 48, 50, 51, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 12 2006

Keywords

Comments

A116357(a(n)) > 0; complement of A116358.

Examples

			45 = 2*3 + 2*3 + 2*3 + 2*3 + 2*3 + 3*5 =
= 3*5 + 3*5 + 3*5, therefore 45 is a term: A116357(45)=2.
		
Showing 1-2 of 2 results.